K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

a + b = 5

b + c = 7

c + a = 10

=> ( a +b ) + ( b + c ) + ( c + a ) = 5 + 7 + 10

=> 2 ( a + b + c ) = 22

=> a + b + c = 11

Có a = a + b + c - ( b + c )

       = 11 - 7

       = 4

b = a + b +c - ( a +c )

  = 11 - 10

  = 1

c = a +b + c - (a + b )

  = 11 - 5

  = 6

21 tháng 12 2018

Cảm ơn bạn Lê Đình Vũ nha !

NV
14 tháng 1

Min:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc\ge a^3+b^3+c^3\)

\(\Rightarrow a+b+c\ge\sqrt[3]{a^3+b^3+c^3}=\sqrt[3]{3}\)

\(\Rightarrow P=\dfrac{a}{7-3bc}+\dfrac{b}{7-3ca}+\dfrac{c}{7-3ab}\ge\dfrac{a}{7}+\dfrac{b}{7}+\dfrac{c}{7}=\dfrac{a+b+c}{7}\ge\dfrac{\sqrt[3]{3}}{7}\)

Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(0;0;\sqrt[3]{3}\right)\) và các hoán vị

Max:

\(\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3a+3b+3c\)

\(\Rightarrow a+b+c\le\dfrac{a^3+b^3+c^3+6}{3}=3\)

 

Khi đó:

\(7P=\dfrac{7a}{7-3bc}+\dfrac{7b}{7-3ca}+\dfrac{7c}{7-3ab}=\dfrac{a\left(7-3bc\right)+3abc}{7-3bc}+\dfrac{b\left(7-3ca\right)+3abc}{7-3ca}+\dfrac{c\left(7-3ab\right)+3abc}{7-3ab}\)

\(=a+b+c+\dfrac{3abc}{7-3bc}+\dfrac{3abc}{7-3ca}+\dfrac{3abc}{7-3ab}\)

Ta có:

\(7-3ab\ge\dfrac{7}{9}\left(a+b+c\right)^2-3ab=\dfrac{1}{9}\left[\dfrac{13}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)+7c^2+14bc+14ca\right]\)

Do \(\dfrac{13}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a^2+b^2\right)\ge ab\)

\(\Rightarrow7-3ab\ge\dfrac{1}{9}\left(ab+7c^2+14bc+14ca\right)\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{27abc}{ab+7c\left(c+2a+2b\right)}\le\dfrac{27abc}{36^2}\left(\dfrac{1^2}{ab}+\dfrac{35^2}{7c\left(c+2a+2b\right)}\right)\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{c}{48}+\dfrac{175}{48}.\dfrac{ab}{c+2a+2b}=\dfrac{c}{48}+\dfrac{175}{48}.\dfrac{ab}{\left(a+b+c\right)+\left(a+b\right)}\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{c}{48}+\dfrac{175}{48}.\dfrac{ab}{5^2}\left(\dfrac{3^2}{a+b+c}+\dfrac{2^2}{a+b}\right)\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{c}{48}+\dfrac{21}{16}.\dfrac{ab}{a+b+c}+\dfrac{7}{12}.\dfrac{ab}{a+b}\le\dfrac{c}{48}+\dfrac{21}{16}.\dfrac{ab}{a+b+c}+\dfrac{7}{48}.\dfrac{\left(a+b\right)^2}{a+b}\)

\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{7a+7b+c}{48}+\dfrac{21}{16}.\dfrac{ab}{a+b+c}\)

Tương tự:

\(\dfrac{3abc}{7-3bc}\le\dfrac{a+7b+7c}{48}+\dfrac{21}{16}.\dfrac{bc}{a+b+c}\)

\(\dfrac{3abc}{7-3ca}\le\dfrac{7a+b+7c}{48}+\dfrac{21}{16}.\dfrac{ca}{a+b+c}\)

\(\Rightarrow7P\le\dfrac{21}{16}\left(a+b+c\right)+\dfrac{21}{16}\left(\dfrac{ab+bc+ca}{a+b+c}\right)\le\dfrac{21}{16}\left(a+b+c\right)+\dfrac{21}{48}.\dfrac{\left(a+b+c\right)^2}{a+b+c}\)

\(\Rightarrow7P\le\dfrac{7}{4}\left(a+b+c\right)\)

\(\Rightarrow P\le\dfrac{a+b+c}{4}\le\dfrac{3}{4}\)

Vậy \(P_{max}=\dfrac{3}{4}\) khi \(a=b=c=1\)

 

 Ta có: A^2= b(a-c)-c(a-b)=ab-bc-ac+bc=ab-ac=a(b-c)=-20.(-5)=100
=>A=10(vì A>0)

Tick nha 

31 tháng 3 2016

Có abbc < 10.000 
=> ab.ac.7 < 10000 
=> ab.ac < 1429 
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0) 
=> a0 < 38 
=> a <= 3 
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại 
+)Với a = 2 ta có 
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1) 
=> a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10) 
=> 1c.7 < 110 => 1c < 16 => c < 6 
vậy c chỉ có thể = 5 
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105 
<=> 100.1b + b5 = 1b.105b 
<=> b5 = 5.1b 
<=> 10b + 5 = 5.(10+b) 
=> b = 9 
vậy số abc là 195

31 tháng 3 2016

hoi kho day

11 tháng 4 2016

a=1

b=9

c=5

k minh minh k lai

11 tháng 4 2016

abc=195

27 tháng 1 2016

 

 

 

 

c=5/7+5/7

b=7/15+8/15

a=3/5+3/5

11 tháng 1 2017

abc = 546

11 tháng 1 2017

546 nha

4 tháng 1 2017

abc=546

4 tháng 1 2017

TỰ TÚC ĐÊ KO GIÚP ĐÂU

15 tháng 1 2017

abc=564 đó nha

16 tháng 1 2017

Abc = 564