K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

A = 2010 . 2020 + 10 và B = 2015 . 2015 + 10 

A = 2010 . 2020 + 10

A = 2010 . ( 2015 + 5 ) + 10

A = 2010 . 2015 + 2010 . 5 + 10

B = 2015 . 2015 + 10

B = (2010 + 5) . 2015+ 10

B = 2010.2015 + 2015.5 + 10

Vì 2010.5 < 2015.5 nên A < B

A = 2015 . 2020 - 1

A = ( 2010 + 5 ) . 2020 - 1

A = 2010 . 2020 + 2020 . 5 - 1

B = 2010 . 2025 - 1

B = 2010 . ( 2020 + 5 ) - 1

B = 2010 . 2020 + 2010 . 5 - 1.

Vì 2020.5 > 2010.5 nên A > B.

( Dấu chấm là dấu nhân nha bạn )

9 tháng 9 2019

B dau vay bn

9 tháng 9 2019

B = 2015 × 2025

31 tháng 7 2020

1) a. Số chẵn nhỏ nhất có 2 chữ số : 10 

Số chẵn lớn nhất có 2 chữ số 98

=> Số số hạng từ 10 đến 98 là : 

(98 - 10) : 2 + 1 = 45 số

=> Tổng của chúng là : 45.(98 + 10) : 2 = 2430

b) Số lẻ nhỏ nhất có 3 chữ số : 101

Số lẻ lớn nhất có 3 chữ số : 999

=> Số số hạng của dãy là : (999 - 101) : 2 + 1 = 450 số

=> Tổng của chúng là : 450 x (999 + 101) : 2 = 247500

2) a, Ta có A = 2019.2021 = (2020 - 1).(2020 + 1) = 2020.2020 - 2020 + 2020 - 1 = 2020.2020 - 1 < 2020.2020 = B

=> A < B

b. Ta có C = 53.35 - 18 = 53.(34 + 1) - 18 = 53.34 + 53 - 18 = 53.34 + 35 = B

=> B = C

c. Ta có M = 2014.2015 - 1 = (2013 + 1).2015 - 1 = 2013.2015 + 2015 - 1 = 2013.2015 + 2014 = N

=> M = N

Bài làm

a) Tổng các số tự nhiên chẵn có 2 chữ số là:

10 + 12 + 14 + 16 + ... + 96 + 98

Số số hạng là:

( 98 - 10 ) : 2 + 1 = 45 ( số hạng )

Tổng là:

( 98 + 10 ) x 45 : 2 = 2430

b) Tổng các số tự nhiên lẻ có ba chữ số là:

101 + 103 + 105 + ... + 996 + 997 + 999

Số số hạng là:

( 999 - 101 ) : 2 + 1 = 450 ( số hạng )

Tổng là:

( 999 + 101 ) x 459 : 2 = 247500

Bài 2:

a) Ta có: A = 2019 . 2021

A = ( 2020 - 1 )( 2020 + 1 )

A = [( 2020 - 1 ) * 2020 ] + [ ( 2020 - 1 ) * 1 ]

A = ( 2020 * 2020 - 2020 ) + ( 2020 - 1 )

A = 2020 * 2020 - 2020 + 2020 - 1

A = 2020 * 2020 - 1

Mà B  2020 * 2020

=> 2020 * 2020 - 1 < 2020 * 2020

hay A < B

b) C = 35 * 53 - 18 và D = 35 + 53 * 34

Ta có: D = 35 + 53 . 34

D = 35 + 53 * ( 35 - 1 )

D = 35 + 53 * 35 - 53

D = 53 * 35 - 18

Mà C = 35 * 53 - 18

=> C = D 

~ Maẹ bắt ngủ r, xl ~

1 tháng 4 2021

A=-2015/2015x2016

A=-1/2016

B=-2014/2014x2015

B=-1/2015

vi 2016>2015,-1/2016>-1/2015

vay A>B

b) Ta có: \(A=\dfrac{10^{2009}+1}{10^{2010}+1}\)

\(\Leftrightarrow10A=\dfrac{10^{2010}+10}{10^{2010}+1}=1+\dfrac{9}{10^{2010}+1}\)

Ta có: \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)

\(\Leftrightarrow10B=\dfrac{10^{2011}+10}{10^{2011}+1}=1+\dfrac{9}{10^{2011}+1}\)

Ta có: \(10^{2010}+1< 10^{2011}+1\)

\(\Leftrightarrow\dfrac{9}{10^{2010}+1}>\dfrac{9}{10^{2011}+1}\)

\(\Leftrightarrow\dfrac{9}{10^{2010}+1}+1>\dfrac{9}{10^{2011}+1}+1\)

\(\Leftrightarrow10A>10B\)

hay A>B

18:

a: \(S=3\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)

=3*(1/2-1/4+1/4-1/6+...+1/98-1/100)

=3*49/100=147/100

b: Để A là số nguyên thì n-1 thuộc Ư(2)

=>n-1 thuộc {1;-1;2;-2}

=>n thuộc {2;0;3;-1}

29 tháng 4 2020

Ta có: 

\(10A=\frac{10^{2015}+20200}{10^{2015}+2020}=1+\frac{18180}{10^{2015}+2020}\)

\(10B=\frac{10^{2016}+20200}{10^{2016}+2020}=1+\frac{18180}{10^{2016}+2020}\)

Vì \(10^{2016}+2020>2^{2015}+2020\)

=> \(\frac{18180}{10^{2016}+2020}< \frac{18180}{10^{2015}+2020}\)

=> \(1+\frac{18180}{10^{2016}+2020}< 1+\frac{18180}{10^{2015}+2020}\)

=> 10B < 10A

=> B<A

29 tháng 4 2020

\(A=\frac{10^{2014}+2020}{10^{2015}+2020}\)\(< \) \(B=\frac{10^{2015}+2020}{10^{2016}+2020}\)

chúc bạn học tốt

study well

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

2 tháng 1 2016

b=2014.2016=(2015-1)(2015+1)
=>b=20152-1
Mà a=20152=>20152>20152-1
                    =>a>b
Tick cho mình nha 
nguyễn minh châu
 



 

11 tháng 12 2021

Hãy cố gắng giải bài này nhé!

11 tháng 12 2021

Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{2b}=\dfrac{2b}{c}=\dfrac{c}{a}=\dfrac{a+2b+c}{2b+c+a}=1\)

\(\dfrac{a}{2b}=1\Rightarrow a=2b\\ \dfrac{2b}{c}=1\Rightarrow c=2b\\ \dfrac{c}{a}=1\Rightarrow a=c\\ \Rightarrow a=2b=c\)

\(M=\dfrac{a^3.c^2.b^{2015}}{b^{2020}}=\dfrac{a^3.a^2}{b^5}=\dfrac{a^5}{b^5}=\dfrac{\left(2b\right)^5}{b^5}=\dfrac{32b^5}{b^5}=32\)