ìm các số tự nhiên x, y biết: 14.(x - 2023)2 = 26 - 3y2 theo chương trình lớp 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
Vì x+5 chia hết cho 5 => x chia hết cho 5
=> x có tận cùng = 0 hoặc 5.Mà vì x là số tự nhiên nhỏ nhất => x có tận cùng = 0
Vì x-12 chia hết cho 6. => x vừa chia hết cho 2 và 3.
=> b+a = 0+a chia hết cho .3 => a chia hết cho 3
Vì (14+x) chia hết cho 7 => x chia hết cho 17
Vậy a= 7 là phù hợp vậy số cần tìm là 70
đây ko pải là lớp 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!
tick
mình
nha
(x-2012)^2=n
49-y^2=12.n {n <5}
y^2=49-12.n
với
n={0,1,4}
y^2={49,37,1}
y={+-7,+-1}
x-2012={0,+-2}
DS:
(x,y)=(0,+-7}; (2014,+-1);(2010,+-1}
Nhận thấy: 122 > 50 và 73>50 => x \(\le\)2 ; y \(\le\)1
1/ y=0 => 7x+1 = 50 <=> 7x=49 = 72 <=> x=2
2/ y=1 => 7x+12 = 50 <=> 7x=38 => Không có giá trị của x thỏa mãn
Đáp số: (x,y)=(2; 0)
Theo t/c dãy tỉ số=nhau:
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\)\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
Do đó:
+)\(\frac{12x-15y}{7}=0\Rightarrow12-15y=0\Rightarrow12x=15y\Rightarrow3.4x=3.5y\Rightarrow4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\left(1\right)\)
+)\(\frac{20z-12x}{9}=0\Rightarrow20z-12x=0\Rightarrow20z=12x\Rightarrow4.5z=4.3x\Rightarrow5z=3x\Rightarrow\frac{x}{5}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2)
=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)
Do đó:
+)\(\frac{x}{5}=4\Rightarrow x=20\)
+)\(\frac{y}{4}=4\Rightarrow y=16\)
+)\(\frac{z}{3}=4\Rightarrow z=12\)
Vậy (x;y;z)=(20;16;12)
16x2 - 2xy2 - 3y2 + 24x = -336
\(\Leftrightarrow\) 16x2 - 2xy2 - 3y2 + 24x = -336
\(\Leftrightarrow\) 2x(8x - y2) + 3(8x - y2) = -336
\(\Leftrightarrow\) (8x - y2)(2x + 3) = -336
Đến đây chắc tự tìm được r
Chúc bn học tốt!
câu 1:
uses crt;
var p,i:integer;
begin
clrscr;
p:=1;i:=1;while i<=5 do
begin
p:=p*i;i:=i+1;
end;
write(p);
readln;
end.
bai 2:
uses crt;var p,i:integer;begin clrscr; p:=1; i:=0; while i <=10 do begin
i:=i+1; if (i mod 2<>0) then p:=p*i; end; write(p); readln;end. bai 3:
uses crt;var n,i,p:integer;begin clrscr; write('nhap n: '); readln(n); i:=1; p:=1; while i<=n do begin if i mod 2=0 then p:=p*i; i:=i+1; end; write(p); readln;end.
Bài 1:
a: Ta có: \(48751-\left(10425+y\right)=3828:12\)
\(\Leftrightarrow y+10425=48751-319=48432\)
hay y=38007
b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)
\(\Leftrightarrow2367-y=1222\)
hay y=1145
Bài 2:
Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)
\(\Leftrightarrow288:\left(x-3\right)^2=2\)
\(\Leftrightarrow\left(x-3\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
Giải
\(\frac{3+x}{5+y}=\frac{3}{5}\)
\(\Leftrightarrow5\left(3+x\right)=3\left(5+y\right)\)
\(\Leftrightarrow15+5x=15+5y\)
\(\Leftrightarrow5x=5y\)( cùng bớt đi 15 )
\(\Leftrightarrow x=y\) ( cùng chia cho 5 )
Mà \(x+y=16\Leftrightarrow x+x=16\Leftrightarrow x=y=8\)
Vậy \(x=y=8\)
Lời giải:
Vì $y^2\geq 0$ với mọi $y$ nên $14(x-2023)^2=26-3y^2\leq 26$
$\Rightarrow (x-2023)^2\leq \frac{26}{14}< 2$
Mà $(x-2023)^2$ là scp nên $(x-2023)^2=0$ hoặc $(x-2023)^2=1$
Nếu $(x-2023)^2=0$ thì: $26-3y^2=0\Rightarrow y^2=\frac{26}{3}$ (vô lý - loại)
Nếu $(x-2023)^2=1$ thì:
$x-2023=\pm 1\Rightarrow x=2022$ hoặc $x=2024$
$26-3y^2=14\Rightarrow 3y^2=12\Rightarrow y^2=4\Rightarrow y=\pm 2$
Vậy $(x,y)=(2022, 2), (2022, -2), (2024,2), (2024,-2)$