cho biểu thức E = 4/3 7/3^2 10/3^3 ... 301/3^100 . So sánh E với 2,75
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2 + 1 + 3 + 1 + 4 + .. + 1 + 100
= 99 x 1 + ( 2 + 3 + 4 + ... + 100 )
= 5148 ( 1 )
1 + 3 + 5 +7 + ... + 301
= \(\frac{\left[\left(301-1\right):2+1\right].\left(301+1\right)}{2}\)
= 22801 (2)
Từ ( 1) và (2) => 1+3+ ....+ 301 > 1+2+1+3+1+4 +...+ 1 + 100
b) làm tương tự
Câu đầu bé theo linh cảm thôi
Câu hai:Lớn vì phép đầu với phép hai ko có số 1,25 là bằng nhau nhưng lại có.
a. A= -2012+(-596)+(-201)+496+301
= -2012+(496-596)+(301-201)
= -2012+(-100)+100
= -2012
c.
Tổng C có số số hạng là:
(100-1):1+1=100
Có số cặp là:
100:2=50(cặp)
Ta có: C= 1-2+3-4+...+99-100
= (1-2)+(3-4)+...+(99-100)
= (-1)+(-1)+...+(-1)
= (-1).50
=-50
a)A=(-123) - 77 + (-257) +23 - 43 b)B=48+| 48-174|+(-74)
A=[(-123) - 77]+[(-257)-43]+23 B=48+(174-48)+(-74)
A= -200+(-300)+23 B=48+174+(-48)+(-74)
A= -500+23 B=[48+(-48)]+[174+(-74)]
A= -477 B=0+100=100
c)C= -2012+(-596)+(-201)+496+301 d)D=1+2-3-4+5+6-7-8+............-79-80-81
C= -2012+[(-596)+496]+[(-201)+301] D=1+(2-3-4+5)+(6-7-8+9)+............+(78-79-80-81)
C= -2010+(-100)+100 D=1+0+0+............+(-162)
C= -2010+0 D=1+(-162)
C= -2010 D= -161
\(A=100+98+96+...+2-97-95-...-1\)
\(A=100+\left(98-98\right)+\left(96-95\right)+...+\left(2-1\right)\)
\(A=100+1+1+...+1\)
\(A=100+1\cdot49\)
\(A=100\cdot49\)
\(A=4900\)
\(B=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302\)
\(B=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(298-299-300+301\right)+302\)
\(B=1+0+0+...+302\)
\(B=1+302\)
\(B=303\)
A = 1 . 3 + 3 . 5 + 5 . 7 + ... + 49 . 51
= 1 . 51
= 51
B = 2 . 4 + 4 . 6 + 6 . 8 + ... + 98 . 100
= 2 . 100
= 200
C = 1 . 4 + 4 . 7 + 7 . 10 + ... + 301 . 304
= 1 . 304
= 304
D = 1 + 1 . 1! + 2 . 2! + 3 . 3! + ... + 100 . 100!
= 1 . 100
= 100
E = 22 + 42 + ... + ( 2n )2
= 22 . ( 2n )2
= 2n4
A = 1 + 3 + 5 + ... + 101
A = ( 101 + 1) x 51 : 2
A = 2061
B = 1 + 4 + 7 + 10 + ...+ 100
B = ( 1 + 100) x 34 :2
B = 1717
\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right).\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=3\left(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+2022}\right)\)
\(=3\left(\dfrac{1}{\dfrac{2.\left(2+1\right)}{2}}+\dfrac{1}{\dfrac{3.\left(3+1\right)}{2}}+...+\dfrac{1}{\dfrac{2022.\left(2022+1\right)}{2}}\right)\)
\(=3\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2022.2023}\right)\)
\(=3.2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)\)
\(=6.\dfrac{2021}{4046}=3.\dfrac{2021}{2023}=\dfrac{6063}{2023}=\dfrac{18189}{6069}\)
\(\dfrac{10}{3}=\dfrac{20230}{6069}>\dfrac{18189}{6069}=M\)
a, A = \(\dfrac{3^{10}\times10+3^{10}\times6}{3^9\times2^4}\)
A = \(\dfrac{3^{10}\times\left(10+6\right)}{3^9\times2^4}\)
A = \(\dfrac{3^{10}\times16}{3^9\times16}\)
A = 3
c, C = \(\dfrac{36^{10}\times25^{15}}{30^8}\)
C = \(\dfrac{\left(6^2\right)^{10}.\left(5^2\right)^{15}}{30^8}\)
C = \(\dfrac{6^{20}.5^{30}}{6^8.5^8}\)
C = 612.522
Dấu giữa các số là gì vậy bạn?
dấu cộng nhé