K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

1.

a, (x-1) . (x+1) . (x+2) = (x2 - 1)(x + 2) = x3 - x + 2x2 - 2

b, \(\frac{1}{2x^2y^2}\). (2x+y) . (2x-y) = \(\frac{1}{2x^2y^2}\).[(2x)2 - y2] =\(\frac{1}{2x^2y^2}\)(4x2 - y2) =  \(\frac{4x^2-y^2}{2x^2y^2}\)

c, (x-1/2). (x+1/2) . (4x-1) = \(\left(x^2-\frac{1}{4}\right)\left(4x-1\right)=4x^3-x-x^2+\frac{1}{4}\)

8 tháng 9 2017

sửa lại câu a cho hokage naruto

a) ( x - 1 ) . ( x + 1 ) . ( x + 2 )

= x^2 + x - x - 1 . ( x + 2 )

= ( x^2 - 1 ) . ( x + 2 )

= x^3 + 2x^2 - x - 2

= x^2 + 2x^2 - 2

( chỉ góp ý câu a vậy thôi ) các câu khác ko có ý kiến

a: =5x^3-5x^2y+5x-2x^2y+2xy^2-2y

=5x^3-7x^2y+2xy^2+5x-2y

b: =(x^2-1)(x+2)

=x^3+2x^2-x-2

c: =1/2x^2y^2(4x^2-y^2)

=2x^4y^2-1/2x^2y^4

d: =(x^2-1/4)(4x-1)

=4x^3-x^2-x+1/4

e: =x^2-2x-35+(2x+1)(x-3)

=x^2-2x-35+2x^2-6x+x-3

=3x^2-7x-38

4 tháng 11 2023

Bài 1:

\(a,2x^2y\left(2x^2y^2-xy^2\right)\\ =2x^2x^2y^2y-2x^2x.y^2.y=2x^4y^3-2x^3y^3\\ b,\left(x-1\right)\left(2x+3\right)\\ =x.2x+x.3-1.2x-1.3=2x^2+3x-2x-3\\ =2x^2+x-3\\ c,\left(20x^3y^4+10x^2y^3-5xy\right):5xy\\ =20x^3y^4:5xy+10x^2y^3:5xy-5xy:5xy\\ =\left(20:5\right).\left(x^3:x\right).\left(y^4:y\right)+\left(10:5\right).\left(x^2:x\right).\left(y^3:y\right)-\left(5:5\right).\left(x:x\right).\left(y:y\right)\\ =4x^2y^3+2xy^2-1\\ d,\left(y-3x\right)^2-\left(y^2-6xy\right)\\ =\left[y^2-2.y.3x+\left(3x\right)^2\right]-\left(y^2-6xy\right)\\ =y^2-6xy+9x^2-y^2+6xy =9x^2\)

4 tháng 11 2023

Bài 2:

\(a,4xy+4xz=4x\left(y+z\right)\\ b,x^2-y^2+9-6x\\ =\left(x^2-6x+9\right)-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\left(x-3+y\right)\)

Bài 3:

\(a,\dfrac{3xy}{y+z}+\dfrac{3xz}{y+z}\\=\dfrac{3xy+3xz}{y+z}\\ =\dfrac{3x\left(y+z\right)}{\left(y+z\right)}=3x\left(Với:y\ne-z\right)\\ b,\dfrac{x}{x+2}-\dfrac{x}{x-2}\\ =\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x^2-2x}{\left(x+2\right)\left(x-2\right)}=0\)

12 tháng 12 2021

c: \(=4x^2-12x+9-4x^2+x=-11x+9\)

12 tháng 12 2021

\(a,=2x^2-10x+x^2+x-6=3x^2-9x-6\\ b,=x^2+4x+4-x^2+8x-15=12x-11\\ c,=4x^2-12x+9-4x^2+x=-11x+9\)

18 tháng 11 2021

\(Bài1:\\ a,\left(4x-1\right)\left(2x^2-x-1\right)=4x\left(2x^2-x-1\right)-\left(2x^2-x-1\right)=8x^3-4x^2-4x-2x^2+x+1=8x^3-6x^2-3x+1\\ b,\left(4x^3+8x^2-2x\right):2x\\ =2x\left(2x^2+4x-1\right):2x\\ =2x^2+4x-1\)

\(Bài2:\\ a,2x^3-8x^2+8x=2x\left(x^2-4x+4\right)=2x\left(x-2\right)^2\\ b,2xy+2x+yz+z=2x\left(y+1\right)+z\left(y+1\right)=\left(y+1\right)\left(2x+z\right)\\ c,x^2+2x+1-y^2=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\)

ukm thiếu ý c bài 1 nha bn XD

28 tháng 12 2021

a,\(\dfrac{3-x}{x-5}+\dfrac{2x-8}{x-5}=\dfrac{3-x+2x-8}{x-5}=\dfrac{x-5}{x-5}=1\)

b, \(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2-y^2}=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}+\dfrac{x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y+x-y+2x}{\left(x-y\right)\left(x+y\right)}=\dfrac{4x}{\left(x-y\right)\left(x+y\right)}\)

Làm giúp mình câu 22 với 
    undefined

23 tháng 9 2023

\(a,\dfrac{x^2+2}{x^3+1}-\dfrac{1}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ =\dfrac{x^2+2-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\\ c,\dfrac{1}{2-2x}-\dfrac{3}{2+2x}+\dfrac{2x}{x^2-1}\\ =\dfrac{-1}{2\left(x-1\right)}-\dfrac{3}{2\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm1\right)\\ =\dfrac{-1\left(x+1\right)-3\left(x-1\right)+2x.2}{2\left(x+1\right)\left(x-1\right)}\\ =\dfrac{-x-1-3x+3+4x}{2\left(x+1\right)\left(x-1\right)}=\dfrac{2}{2\left(x+1\right)\left(x-1\right)}=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

23 tháng 9 2023

sáng sớm mà chăm thế anh 8h còn đi học mà :> 

3 tháng 12 2021

Giúp với mọi người

 

 

c: \(=3x^3-4x^2+6x^2-8x=3x^2+2x^2-8x\)

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349