K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

\(^{2^4+2^3+1=25=5^2}\)hoặc\(\left(-2\right)^4+\left(-2\right)^3+1=9=3^2\)

10 tháng 3 2017

n không tồn tại:))

9 tháng 5 2016

                                  a)               Vi n2 + 2006  la so chinh phuong nen n2 + 2006 = a2 suy ra n2 - a2 = 2006  hay (n+a)x(n-a) = 2006

                                                Ta có a - n + n + a = 2a chia hết cho 2 và a+n - a+n = 2n chia hết cho 2

                                                   Suy ra (ã-n)x(ã+n) có cùng tính chẵn lẻ

                                                  TH1 : a-n và a+n cũng là số lẻ suy ra (a+n) x (a-n) là số lẻ mà 2006 là số chẵn (loại)

                                                   TH2 : a-n và a+n cũng là số chẵn suy ra (a-n)x(a+n) là số chẵn 

                                                   suy ra a-n chia hết cho 2 và a+n chia hết cho 2 nên (a-n)x(a+n) chia hết cho 4 

                                                  mà 2006 ko chia hết cho 4 nè ko có giá trị nào của n thỏa mãn đề bài

11 tháng 6 2018

Ta có:
\(A=n^2\left(n^2+n+1\right)\)
Để A là số chính phương thì \(n^2=n^2+n+1\)(1) hoặc \(n=n\left(n^2+n+1\right)\)(2) hoặc \(1=n^4+n^3+n^2\)(3)
\(\left(1\right)\Leftrightarrow n=-1\left(tm\right)\)
\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)
\(\left(3\right)\Leftrightarrow n=-1\)
Vậy n=0 hoặc n=-1
 

11 tháng 2 2016

Ta có: A = 1! + 2! + 3! +...+ n!

Với n = 1 thì 1! = 1 = 1là số chính phương

Với n = 2 thì 2! + 1! = 3 không là số chính phương

Với n = 3 thì 1! + 2! + 3! = 1+ 1.2 + 1.2.3 = 9 = 32 là số chính phương

Với n \(\ge\) 4 thì 1! + 2! + 3! + 4! = 1 + 1.2 + 1.2.3 + 1.2.3.4 = 33 còn 5! ; 6! ;... đều tận cùng bằng 0

Do đó 1! + 2! + 3! +...+ n! có tận cùng bằng chữ số 3 nên không là số chính phương.

=> n \(\in\) {1; 3}

    Vậy n \(\in\) {1; 3}

"!" là j thế? mk ko bít!

NV
12 tháng 1 2021

\(n^2+2002=k^2\Rightarrow k^2-n^2=2002\)

\(\Rightarrow\left(k-n\right)\left(k+n\right)=2002\)

Do \(\left(k-n\right)+\left(k+n\right)=2k\) chẵn nên \(\left(k-n\right)\) và \(\left(k+n\right)\) cùng chẵn

Bạn chỉ cần xét các cặp ước chẵn của 2002

12 tháng 1 2021

Ta thấy n2 chia cho 4 dư 0 hoặc 1 nên n2 + 2002 chia cho 4 dư 2 hoặc 3.

Do đó n2 + 2002 không thể là số chính phương.