Cho a/c=c/b.CMR:
b^2-a^2/a^-c^2=b-a/a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:a/c=c/b=>c2=ab
thay vào biểu thức ta có:
VT=a2+c2/b2+c2=a2+ab/b2+ab=a(a+b)/b(a+b)=a/b
Vì VT=VP(=a/b)
=>đpcm
ta có \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
...
tương tự và cộng lại \(=>M>\frac{a+b+c+d}{a+b+c+d}=1\)(1)
Lại có \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
...
tương tự và cộng lại \(=>M< \frac{a+b+b+c+c+d+d+a}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)(2)
Từ 1 và 2 = > 1<m<2 ( đpcm)
nhìn vậy mà bảo chị à D:
nghĩa là tiếp tục làm giống như vậy rồi cộng theo từng vế á
kẻ phân giác AD, kẻ BK, CH ⊥ AD
Δvuông BAK có sinA=BK/AB
Δvuông CAH có sinA=HC/AC
Mà sinBAK= sinCAH= sin\(\dfrac{A}{2}\)= \(\dfrac{BK}{AB}=\dfrac{HC}{AC}=\dfrac{BK+HC}{AB+AC}\) (1)
Lại có trong Δvuông BKD và Δvuông DCH có BK<BD,HC<DC(cạnh góc vuông< cạnh huyền)=>BK+HC<BD+DC=BC (2)
Từ (1) và (2) ta có:
\(\dfrac{BK+HC}{AB+AC}< \dfrac{BD+DC}{AB+AC}\) hay \(sin\dfrac{A}{2}< \dfrac{a}{b+c}\)
Áp dụng bđt cosi ta có \(b+c\ge2\sqrt{bc}\Leftrightarrow\dfrac{a}{b+c}\le\dfrac{a}{2\sqrt{bc}}\)
Vậy \(sin\dfrac{A}{2}< \dfrac{a}{2\sqrt{bc}}\)