1/2+1/4+1/8+1/16+1/32+ ...+ 1/2048=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2+1/4+1/8+1/16+1/32+...+1/2048+1/4096
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{12}}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{11}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(A=1-\frac{1}{2^{12}}\)
Đặt \(A=1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..-\frac{1}{2048}\)
\(\Rightarrow A=1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-..-\left(\frac{1}{1024}-\frac{1}{2048}\right)\)
\(\Rightarrow A=1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-..-\frac{1}{1024}+\frac{1}{2018}\)
\(\Rightarrow A+\frac{1}{2018}\)
1-1/2-1/4-1/8-1/16-1/32-1/64-1/128-1/256-1/512-1/1024-1/2048 =0.00048828125
Đặt : \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+......+\frac{1}{2048}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{1024}\)
\(2A-A=1-\frac{1}{2048}\)
\(A=\frac{2047}{2048}\)
Good
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128 = 256
256+256=512
512+512= 1024
1024+1024 = 2048
2048 + 2048 = 4096
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=256
256+256=512
512+512=1024
1024+1024=2048
2048+2048=4096
Đặt A = 1 + 2 + 4 + ... + 2048
A = 1 + 2 + 22 + ... + 211
2A = 2 + 22 + 23 + ... + 212
2A - A = ( 2 + 22 + 23 + ... + 212 ) - ( 1 + 2 + 22 + ... + 211 )
A = 212 - 1
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
64+64=128
128+128=256
512+512=1024
2048+2048=4096
xong
Đặt \(A=1+2+4+.........+4096\)
\(2A=2+4+8+......+8192\)
\(\Rightarrow2A-A=8192-1\)
\(\Rightarrow A=8191\)
Đặt \(S=1+2+4+...+1024+2048+4096\)
\(S=1+2^1+2^2+2^3+....+2^{10}+2^{11}+2^{12}\)
\(2S=2+2^2+2^3+....+2^{11}+2^{12}+2^{13}\)
\(2S-S=\left(2+2^2+2^3+....+2^{12}+2^{13}\right)-\left(1+2+2^2+....+2^{11}+2^{12}\right)\)
\(S=2^{13}-1=8192-1=8191\)
Gọi biểu thức trên là A Ta có :
A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+......+\frac{1}{2048}\)
=> A : 2 = \(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{2048}+\frac{1}{4096}\)
=> \(\frac{1}{2}\)A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+......+\frac{1}{2048}\)- \(\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-......-\frac{1}{2048}-\frac{1}{4096}\)
=> A : 2 = \(\frac{1}{2}-\frac{1}{4096}\)
=> A : 2 = \(\frac{2047}{4096}\)
=> A = \(\frac{2047.2}{4096}\)
=> A = \(\frac{4094}{4096}\)
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/2048
2A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/1024
2A - A = (1 + 1/2 + 1/4 + 1/8 + ... + 1/1024) - (1/2 + 1/4 + 1/8 + 1/16 + ... + 1/2048)
A = 1 - 1/2048
A = 2047/2048
35/2048
2047/2048 nha