A = 1/22+1/32+1/42+...+1/20232+1/20242
Chứng minh A< \(\dfrac{2023}{2024}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
`#3107.101107`
a)
`A = 2023^2` và `B = 2022*2024`
Ta có:
`A = 2023^2 = 2023*2023 = 2023*(2022 + 1) = 2023*2022 + 2023`
`B = 2022*2024 = 2022*(1 + 2023) = 2022*2023 + 2022`
Vì `2023 > 2022`
`=> 2023^2 > 2022*2024`
`=> A > B`
b)
`A=2024^2` và `B = 2023*2025`
`A = 2024^2 = 2024*2024 = 2024*(2023 + 1) = 2024*2023 + 2024`
`B = 2023*2025 = 2023*(2024 + 1) = 2023*2024 + 2023`
Vì `2024 > 2023 => 2024^2 > 2023*2025 => A > B`
Vậy, `A > B`
c)
`A = 2023*2027` và `B = 2025^2`
Ta có:
`A = 2023*(2025 + 2) = 2023*2025 + 4046`
`B = 2025^2 = 2025*2025 = 2025*(2023 + 2) = 2025*2023 + 4050`
Vì `4046 < 4050 => 2023*2027 < 2025^2 => A < B`
Vậy, `A < B`
d)
`107^50` và `73^75`
Ta có:
`107^50 = 107^(2*50) = (107^2)^25 = 11449^25`
`73^75 = 73^(3*25) = (73^3)^25 = 389017^25`
Vì `11449 < 389017 => 11449^25 < 389017^25 => 107^50 < 73^75`
Vậy, `107^50 < 73^75`
e)
`2^1993` và `7^714`
Ta có:
`2^1993 = 2^1988 * 2^5 = (2^14)^142 * 2^5 = 16384^142 * 32`
`7^714 = 7^710 * 7^4 = (7^5)^142 * 7^4 = 16807^142 * 2401`
Vì `16384 < 16807; 32 < 2401`
`=> 2^1993 < 7^714.`
bạn có thể vào trang cá nhân của mình và làm đc mấy bài mình mới đăng lên đc ko ạ? bao nhiêu bài cũng đc ạ. XIN CẢM ƠN
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
...
\(\dfrac{1}{2024^2}< \dfrac{1}{2023\cdot2024}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2024^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2023\cdot2024}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(\Rightarrow A< 1-\dfrac{1}{2024}\)
\(\Rightarrow A< \dfrac{2023}{2024}\)