K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

Nhớ kết bạn với tui nha

7 tháng 9 2017

a) Số hạng thứ 101 là:

2 x 101 = 202 

b) Tổng của A là:

(202 + 2) x 101 : 2 = 10302

(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2...
Đọc tiếp

(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25^2 -1)(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25-(a.b^2-a) với a= -1 , b=(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25 25(a^2 +b^2 -1)-(a.b^2(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25-a) với a= -1 (a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25(a^2 +b^2 -1)-(a.b^2-a) với a= -1 , b= 25=5 25

12
26 tháng 12 2018

Cậu thậc thú zị :v

một câu hỏi rất đáng khen ,.. very good!

6 tháng 6 2018

a) ( a2 + b2+ c2)2 - ( a2 - b2 - c2)2

= ( a2 + b2+ c2 + a2 - b2 - c2)( a2 + b2+ c2 - a2 + b2 + c2)

= 4a2( b2 + c2)

b) ( a + b + c)2 - ( a - b - c)2 - 4ac

= ( a + b + c - a + b + c)( a + b + c + a - b - c) - 4ac

= 4a( b + c) - 4ac

= 4a( b + c - c)

= 4ab

6 tháng 6 2018

Cảm ơn bn nhahaha

e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(=\left(a^3-1\right)\left(a^3+1\right)\)

\(=a^6-1\)

29 tháng 8 2021

lm hết giúp mk vs

 

8 tháng 9 2021

\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\\ =\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left[-\left(a^2-b^2\right)-\left(c^2-a^2\right)\right]+\left(c+a\right)\left(c^2-a^2\right)\\ =\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)+\left(c+a\right)\left(c^2-a^2\right)\\ =\left(a^2-b^2\right)\left(a-c\right)-\left(c^2-a^2\right)\left(a-b\right)\\ =\left(a-b\right)\left(a+b\right)\left(a-c\right)-\left(a+c\right)\left(c-a\right)\left(a-b\right)\\ =\left(a+b\right)\left(a-c\right)\left(a+b-a-c\right)\\ =\left(a+b\right)\left(a-c\right)\left(b-c\right)\)

8 tháng 9 2021

\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc\\ =ab^2+ac^2+bc^2+a^2b+c\left(a^2+2ab+b^2\right)\\ =ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2\\ =\left(a+b\right)\left(ab+c^2+ac+cb\right)\\ =\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

20 tháng 6 2017

Bổ đề : Chứng minh (a + b)2 + (a - b)2 = 2(a2 + b2)

\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)

Áp dụng vào bài toán,ta có :

a) (a + b + c)2 + (b + c - a)2 + (c + a - b)2 + (a + b - c)2

= 2[(b + c)2 + a2] + 2[a2 + (b - c)2] = 2[2a2 + (b + c)2 + (b - c)2] = 2[2a2 + 2(b2 + c2)] = 4(a2 + b2 + c2)

b) (a + b + c + d)2 + (a + b - c - d)2 + (a + c - b - d)2 + (a + d - b - c)2

= 2[(a + b)2 + (c + d)2] + 2[(a - b)2 + (c - d)2] = 2[(a + b)2 + (a - b)2 + (c + d)2 + (c - d)2]

= 2[2(a2 + b2) + 2(c2 + d2)] = 4(a2 + b2 + c2 + d2)

20 tháng 6 2017

câu a) cái khúc =2[(b+c)^2 +a^2] +2[a^2 +(b-c)^2] là răng 

ghi rõ ra dùm

7 tháng 8 2020

Bài làm:

a) \(\left(a+b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2+\left(b+c-a\right)^2\)

\(=4\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca+ab-bc-ca+ca-bc-ab+bc-ab-ca\right)\)

\(=4\left(a^2+b^2+c^2\right)+2.0\)

\(=4\left(a^2+b^2+c^2\right)\)

b) \(\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

7 tháng 8 2020

olmmt

vô tkhđ coi hình ảnh nếu k hiện