Một người bán cam, lần thứ nhât người đó bán 12 quả.
Lần thứ hai người đó bán ½ số cam còn lại và 1 quả.
Lần thứ ba người đó bán ½ số cam còn lại sau 2 lần bán và 1 quả.
Lần thứ tư bán ½ số cam còn lại sau 3 lần bán và còn lại 5 quả.
Số cam lúc đầu là:… quả.
Gọi số cam lúc đầu là x(quả)
Sau lần bán thứ nhất thì số quả còn lại là x-12(quả)
Sau lần bán thứ hai thì số quả còn lại là \(\dfrac{1}{2}\left(x-12\right)-1=\dfrac{1}{2}x-7\left(quả\right)\)
Sau lần bán thứ ba thì số quả còn lại là:
\(\dfrac{1}{2}\left(\dfrac{1}{2}x-7\right)-1=\dfrac{1}{4}x-\dfrac{9}{2}\left(quả\right)\)
Sau lần bán thứ tư thì số quả còn lại là:
\(\dfrac{1}{2}\left(\dfrac{1}{4}x-\dfrac{9}{2}\right)=\dfrac{1}{8}x-\dfrac{9}{4}\)
Do đó, ta có: \(\dfrac{1}{8}x-\dfrac{9}{4}=5\)
=>\(\dfrac{1}{8}x=5+\dfrac{9}{4}=\dfrac{29}{4}\)
=>\(x=\dfrac{29}{4}\cdot8=29\cdot2=58\left(nhận\right)\)
vậy: Số cam ban đầu là 58 quả
5 quả ứng với phân số là:
1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) (số cam còn lại sau lần bán thứ ba)
Số cam còn lại sau lần bán thứ ba là: 5 : \(\dfrac{1}{2}\) = 10(quả)
Nếu lần thứ ba chỉ bán \(\dfrac{1}{2}\) số cam còn lại thì sau khi bán còn lại là:
10 + 1 = 11 (quả)
11 quả ứng với phân số là:
1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) (số cam còn lại sau lần bán thứ hai)
Số cam còn lại sau lần bán thứ hai là:
11 : \(\dfrac{1}{2}\) = 22 (quả)
Nếu lần thứ hai chỉ bán \(\dfrac{1}{2}\) số cam còn lại thì sau khi bán còn lại là:
22 + 1 = 23 (quả)
23 quả ứng với phân số là: 1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) (số cam còn lại sau lần bán thứ nhất)
Số cam còn lại sau lần bán thứ nhất là: 23 : \(\dfrac{1}{2}\) = 46 (qủa)
Lúc đầu người đó có số cam là: 46 + 12 = 58 (quả)
Đs:...