K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có EI//BC

nên \(\dfrac{AE}{AB}=\dfrac{AI}{AC}\left(1\right)\)

Xét ΔADC có FI//DC

nên \(\dfrac{AI}{AC}=\dfrac{AF}{AD}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)

Xét ΔABD có \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)

nên EF//BD

b: Xét ΔCBA có GI//AB

nên \(\dfrac{CG}{BG}=\dfrac{CI}{IA}\left(3\right)\)

Xét ΔCAD có IH//AD

nên \(\dfrac{CI}{IA}=\dfrac{CH}{HD}\left(4\right)\)

Từ (3),(4) suy ra \(\dfrac{CG}{BG}=\dfrac{CH}{HD}\)

=>\(CG\cdot HD=BG\cdot CH\)

13 tháng 9 2023

a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:

\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)

Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Xét tam giác \(ABD\) có:

\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Theo định lí Thales đảo suy ra \(EF//BD\).

b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:

\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)

Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:

\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)

Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)

Theo định lí Thales đảo suy ra \(GH//BD\).

Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:

\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).

a: Xét ΔADC có OF//DC

nên AF/AD=AO/AC

Xét ΔABC có EO//BC

nên AE/AB=AO/AC

=>AF/AD=AE/AB

=>EF//BD

b: OH//AD

=>CH/CD=CO/CA

OG//AB

=>CG/BC=CO/CA

=>CG/BC=CH/CD

=>GH//BD

=>CH/DH=CG/BG

=>CH*BG=DH*CG

23 tháng 1 2022

a) Xét tam giác ADC: EG // DC (gt).

=> \(\dfrac{AE}{AD}=\dfrac{AG}{AB}\) (Định lý Talet). (1)

Xét tam giác ACB: HG // CB (gt).

=> \(\dfrac{AG}{AC}=\dfrac{AH}{AB}\) (Định lý Talet). (2)

Từ (1) và (2) => \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(=\dfrac{AG}{AC}\right).\)

Xét tam giác ADB: \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(cmt\right).\)

=> HE // BD (Định lý Talet đảo).

23 tháng 1 2022

có câu b không cậu mình cần câu b á

 

14 tháng 7 2017

Phương An cứu =(((

21 tháng 9 2023

A B C D E G F H

Xét tg ABC có

EF//AC  (gt) (1)

EA=EB (gt) 

=> FB=FC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

EA=EB (gt); FB=FC (cmt) => EF là đường trung bình của tg ABC

\(\Rightarrow EF=\dfrac{1}{2}AC\) (2)

Xét tg BCD chứng minh tương tự ta cũng có GC=GD

Xét tg ADC có

GF//AC (gt) (3)

GC=GD (cmt)

=> HA=HD (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

GC=GD (cmt); HA=HD (cmt) => GH là đường trung bình của tg ADC

\(\Rightarrow GH=\dfrac{1}{2}AC\) (4)

Từ (1) và (3) => EF//GH (cùng // với AC)

Từ (2) và (4) \(\Rightarrow EF=GH=\dfrac{1}{2}AC\)

=> EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Gọi O là giao của AC và BD

Ta có

FG//BD (gt); GH//AC (gt) \(\Rightarrow\widehat{HGF}=\widehat{DOC}\) (Góc có cạnh tương ứng vuông góc)

Để EFGH là Hình chữ nhật \(\Rightarrow\widehat{HGF}=90^o\)

\(\Rightarrow\widehat{HGF}=\widehat{DOC}=90^o\Rightarrow AC\perp BD\)

Để EFGH là hình chữ nhật => ABCD phải có 2 đường chéo vuông góc với nhau