Cho A B C của một tam giác đều có trọng tâm là g đường trung tuyến AM = 3 cm Tính độ dài GB và GC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác đều ABC có
G là trọng tâm của tam giác(gt)
=> 3 đường trung tuyến bằng nhau
=> \(GB=GC=AG=\dfrac{2}{3}AM=\dfrac{2}{3}.3=2\left(cm\right)\)
cho tam giác abc nhọn có góc ACB=50 độ, h là trực tâm tam giác ABC. khẳng định nào dưới đây sai:
A. góc AHB=130 độ B.góc HBC=40 độ C. góc HAC=BHC D. góc A> góc B>góc C ( bạn nhớ giải thích dùm mk nha)Đề có sai không bạn , nếu `Delta ABC` là tam giác thường thôi thì không cm đc đâu ạ
a)
Vì G là trọng tâm tam giác ABC và AM là đường trung tuyến nên AG= \(\dfrac{2}{3}\)AM (tính chất ba đường trung tuyến của tam giác)
Do đó AG= \(\dfrac{2}{3}.AM=\dfrac{2}{3}.9=6\left(cm\right)\)
b) Vì G là trọng tâm tam giác ABC và AM là đường trung tuyến nên AG= \(\dfrac{2}{3}\)AM (tính chất ba đường trung tuyến của tam giác)
Do đó AM= \(\dfrac{AG}{\dfrac{2}{3}}=\dfrac{8}{\dfrac{2}{3}}=12\left(cm\right)\)
a) Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
G A B C D E F
tam giác ABC đều
=> AB=AC=BC
góc B = góc C= góc A
D,E,F là trung điểm BC,AC,AB
Xét tam giác ABD và ADC
AD chung
AB=AC
BD=DC
=> ABD=ACD (c.c.c)
=> góc ADB = góc ADC = 90 độ , góc BAD = góc CAD = 30 độ
tương tự ta có:
góc AFC =BFC, ACF=BCF=30
góc AEB=CEB, EBC = EBA=30
Xét tam giác AFG và tam giác BFG
góc AFG=BFG
AF=FB
góc FAG= FBG=30 độ
FG chung
=>tam giác AFG=BFG
=>AG=GB
tương tự cm tam giác AEG=CEG
=>AG=GC mà AG=GB
=>GA=GB=GC
Vậy ...
Theo tính chất đường trung tuyến trong tam giác vuông thì ta có:
\(AG=2.GM=\frac{2}{3}AM=\frac{2}{3}.12=8\)(cm)
\(\Rightarrow GM=8:2=4\)(cm)
Vì ΔABC đều có G là trọng tâm
nên GB=GA=GC
=>\(GB=GC=\dfrac{2}{3}AM=\dfrac{2}{3}\cdot3=2\left(cm\right)\)