Cho (a + b)2 = 2(a2 + b2). Chứng minh rằng a = b
Giải thích rõ ràng nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c)2=3(ab+bc+ca)
<=> a2+b2+c2+2ab+2ac+2bc=3ab+3bc+3ca
<=> a2+b2+c2+2ab+2ac+2bc-3ab-3bc-3ca=0
<=> a2+b2+c2-ab-bc-ca=0
<=> 2a2+2b2+2c2-2ab-2bc-2ca=0
<=> (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
<=> (a-b)2+(b-c)2+(c-a)2=0
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\) (đpcm)
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\Rightarrow a^2+2ab+b^2=2a^2+2b^2\Rightarrow a^2-2ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a-b=0\Rightarrow a=b\left(đpcm\right)\)
ta có \(a^2+b^2+c^2=ab+bc+ca\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)
=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
dấu = xảy ra <=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\) (ĐPCM)
\(a^2+b^2+c^2=ab+bc+ca\)
<=> \(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)
=> a-b=0 ; b-c =0 ; a-c=0
=> a=b ; b=c ; c=a
=> a=b=c
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\) (đpcm)
z 2 = ( a + b i ) 2 = a 2 − b 2 + 2abi
( z ) 2 = ( a - b i ) 2 = a 2 − b 2 − 2abi
z.z− = (a + bi)(a − bi) = a 2 + b 2
Từ đó suy ra các kết quả.
Biến đổi vế trái ta có:
VT = (a + b)( a 2 – ab + b 2 ) + (a – b)( a 2 + ab + b 2 )
= a 3 + b 3 + a 3 – b 3 = 2 a 3 = VP
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Ta có: \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\)
hay a=b
dê mà, thôi mik giải cho k mik vs nha
A = 5 + 5^2 + 5^3 + .......... + 5^8
5A = 5^2 + 5^3 + 5^4 + .................. + 5^9
5A - A = 5^2 + 5^3 + 5^4 + .................. + 5^9 - 5 - 5^2 - 5^3 - .......... - 5^8
4A = 5^9 - 5
Suy ra A = ( 5^9 - 5 ) : 4 = 488280 chia hết cho 30
đừng quên k nha
ta có \(\left(a+b\right)^2=2\left(a^2+b^2\right)\Rightarrow a^2+b^2+2ab=2\left(a^2+b^2\right)\)
\(\Rightarrow2ab=a^2+b^2\Rightarrow a^2+b^2-2ab=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)(ĐPCM)
Ta có :\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)
\(\Leftrightarrow2a^2-a^2-2ab+2b^2-b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\)
\(\Leftrightarrow a=b\)
nhớ tk cho mk nha <: