K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2024

\(A=\dfrac{x}{5x-2}=\dfrac{1}{5}\left(\dfrac{5x-2+2}{5x-2}\right)=\dfrac{1}{5}\left(\dfrac{5x-2}{5x-2}+\dfrac{2}{5x-2}\right)\)

\(A=\dfrac{1}{5}\left(1+\dfrac{2}{5x-2}\right)\)

A có giá trị nhỏ nhất khi \(\dfrac{2}{5x-2}\) nhỏ nhất

\(\Rightarrow5x-2\) là số nguyên âm nhỏ nhất

Do \(5x-2\) chia 5 dư -2, và \(-2\) là số nguyên âm nhỏ nhất thỏa mãn chia 5 dư -2

\(\Rightarrow5x-2=-2\)

\(\Rightarrow x=0\)

21 tháng 8 2017

a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)

\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)

Suy ra  \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)

Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)

b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)

Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.

Vậy \(minC=-\frac{1}{2}\) khi x = 0.

28 tháng 6 2016

a) A=-9x2+24x+1=-9x2+24x-16+17

=-9x2+12x+12x-16+17

=-3x.(3x-4)+4.(3x-4)+17

=(3x-4)(-3x+4)+17

=-(3x-4)(3x-4)+17

=-(3x-4)2+17 \(\le\) 17 (với mọi x)

Dấu "=" xảy ra khi x=4/3

Vậy GTLN của A là 17 tại x=4/3

 

 

28 tháng 6 2016

Câu b đề phải là tìm GTLN chứ nhỉ

Ta có: x2-5x+7= \(x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}=x.\left(x-\frac{5}{2}\right)-\frac{5}{2}.\left(x-\frac{5}{2}\right)+\frac{3}{4}\)

\(=\left(x-\frac{5}{2}\right)\left(x-\frac{5}{2}\right)+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)(với mọi x)

=>\(B=\frac{2016}{x^2-5x+7}\le\frac{2016}{\frac{3}{4}}=2688\)(với mọi x)

Dấu "=" xảy ra khi x=5/2

Vậy GTLN của B là 2688 tại x=5/2

6 tháng 6 2018

Điều kiện có 2 nghiệm phân biệt tự làm nha

Theo vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)

\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)

\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)

\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)

Làm nốt nhé

6 tháng 6 2018

Câu 1:

M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)

=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)

=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)

\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)

\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)