K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay m=-1 vào phương trình, ta được:

\(x^2-2\left(-1-1\right)x+\left(-1\right)+1=0\)

=>\(x^2+4x=0\)

=>x(x+4)=0

=>\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\)

\(=4\left(m^2-2m+1\right)-4\left(m+1\right)\)

\(=4\left(m^2-3m\right)\)

Để phương trình có hai nghiệm thì Δ>=0

=>m^2-3m>=0

=>m(m-3)>=0

=>\(\left[{}\begin{matrix}m>=3\\m< =0\end{matrix}\right.\)

Theo Vi-et, ta có:

\(x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right);x_1x_2=m+1\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

=>\(\dfrac{x_1^2+x_2^2}{x_1x_2}=4\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)

=>\(\left(2m-2\right)^2-6\left(m+1\right)=0\)

=>\(4m^2-8m+4-6m-6=0\)

=>\(4m^2-14m-2=0\)

=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{4}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{4}\left(nhận\right)\end{matrix}\right.\)

a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)

\(=4m^2+16m+16+8m+20=4m^2+24m+36\)

\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+3<>0

hay m<>-3

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)

\(\Leftrightarrow4m^2+24m+36=4\)

\(\Leftrightarrow m^2+6m+9=1\)

=>m+3=1 hoặc m+3=-1

=>m=-2 hoặc m=-4

3 tháng 5 2023

a, Thay \(m=1\) vào \(\left(1\right)\)

\(\Rightarrow x^2-7x+1=0\\ \Delta=\left(-7\right)^2-4.1.1=45\\ \Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7+3\sqrt{5}}{2}\\x_2=\dfrac{7-3\sqrt{5}}{2}\end{matrix}\right.\)

b,  \(\Delta=\left(-7\right)^2-4.m=49-4m\)

phương trình cs nghiệm \(49-4m\ge0\\ \Rightarrow m\le\dfrac{49}{4}\)

Áp dụng hệ thức vi ét 

\(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=m\end{matrix}\right.\)

\(x^2_1+x^2_2=29\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\\ \Leftrightarrow7^2-2.m-29=0\\ \Leftrightarrow20-2m=0\\ \Rightarrow m=10\left(t/m\right)\)

Vậy \(m=10\)

 

NV
22 tháng 1

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)

Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)

\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)

\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)

\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)

\(\Leftrightarrow2m^2+2m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

23 tháng 2 2022

a, Thay m=3 vào pt ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)

b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

 

NV
23 tháng 1

\(\Delta'=\left(m-2\right)^2+5>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)

\(\left|\left|x_1\right|-\left|x_2\right|\right|=4\)

\(\Leftrightarrow\left(\left|x_1\right|-\left|x_2\right|\right)^2=16\)

\(\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=16\)

\(\Leftrightarrow4\left(m-2\right)^2-2.\left(-5\right)-2.\left|-5\right|=16\)

\(\Leftrightarrow\left(m-2\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}m-2=2\\m-2=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)

28 tháng 1 2023

Ptr có `2` nghiệm `<=>\Delta' >= 0`

    `<=>[-(m-1)]^2-(m+1) >= 0`

    `<=>m^2-2m+1-m-1 >= 0`

     `<=>m(m-3) >= 0<=>[(m <= 0),(m >= 3):}`

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=m+1):}`

Ta có: `[x_1]/[x_2]+[x_2]/[x_1]=4`

`<=>[x_1 ^2+x_2 ^2]/[x_1.x_2]=4`

`<=>[(x_1+x_2)^2-2x_1.x_2]/[x_1.x_2]=4`

`<=>[(2m-2)^2-2(m+1)]/[m+1]=4`        `(m ne -1)`

  `=>4m^2-8m+4-2m-2=4m-4`

`<=>4m^2-14m+8=0`

`<=>m=[7+-\sqrt{17}]/4` (ko t/m)

  `=>` Ko có giá trị `m` t/m

28 tháng 1 2023

cảm ơn nh :P

 

a) Thay m=0 vào phương trình (1), ta được:

\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy: Khi m=0 thì S={0;-2}

5 tháng 5 2021

câu b á

 

Δ=(2m)^2-4(m-1)

=4m^2-4m+4

=4m^2-4m+1+3=(2m-1)^2+3>0

=>Phương trình có hai nghiệm pb

x1<1<x2

=>x2-1>0 và x1-1<0

=>(x1-1)(x2-1)<0

=>x1x2-(x1+x2)+1<0

=>m-1-2m+1<0

=>-m<0

=>m>0

1: \(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-m+1\right)\)

=1+4m-4

=4m-3

Để phương trình có nghiệm kép thì 4m-3=0

hay m=3/4

Thay m=3/4 vào pt, ta được: \(x^2-x+\dfrac{1}{4}=0\)

hay x=1/2

2: Để phương trình có hai nghiệm thì 4m-3>=0

hay m>=3/4

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2x_1+x_2=5\\x_1+x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=4\\x_2=-3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=-m+1\)

=>1-m=-12

hay m=13

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

2 tháng 4 2021

giúp e câu b nx