Cho đa thức A(x) = x + x^2 + x^3 +.....+ x^99 + x^100.
a) Chứng minh rằng x= -1 là nghiệm của đa thức A(x).
b) Tính giá trị của đa thức A(x) tại x= 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Đặt: N=x+x^2+x^3+.....+x^100
N.x=x^2+x^3+......+x^101
N.x-N=(x^2+x^3+......+x^101)-(x+x^2+....+x^100)
N.(x-1)=x^2+x^3+....+x^101-x-x^2-...-x^100
N.(x-1)=x^101-x
N=x^101-x/x-1 (1)
cho: N=x^101-x/x-1=0
x^101-x=0
x.(x^101-1)=0
x=0 hoặc x^101-1=0
x=0 hoặc x=+-1
b,thay x=1/2 vào biểu thức có:
N= tự lắp vào (1) hộ mình
N=1
k cho minh nha!
a) Thay x=-1 vào A(x), ta được:
\(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=-1+1-1+1+...+\left(-1\right)+1\)
=0
Vậy: x=-1 là nghiệm của đa thức A(x)
Thay x=-1 vào A(x), ta được:
A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100
=−1+1−1+1+...+(−1)+1=−1+1−1+1+...+(−1)+1
=0
Vậy: x=-1 là nghiệm của đa thức A(x)
a ) \(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+....+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=-1+1-1+1-1+1-....-1+1\)
\(=\left(-1+1\right)+\left(-1+1\right)+.....+\left(-1+1\right)\)
\(=0\)
Hay \(x=-1\) là nguyện của A(x) (đpcm )
b ) \(A\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{100}\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{100}}\)
\(2A\left(\frac{1}{2}\right)=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{99}}\)
\(\Rightarrow2A\left(\frac{1}{2}\right)-A\left(\frac{1}{2}\right)=1-\frac{1}{2^{100}}\)
\(\Rightarrow A\left(\frac{1}{2}\right)=\frac{2^{100}-1}{2^{100}}\)
Tại \(x=\frac{1}{2}\) thì A(x) = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{100}\)
=> 2A(x) = \(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{99}\)
=> 2A(x) - A(x) =\(1-\left(\frac{1}{2}\right)^{100}\)
=> A(x) = \(1-\left(\frac{1}{2}\right)^{100}\)
a) Với x= -1
thì \(A\left(-1\right)=\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+....+\left(-1\right)^{100}\)
\(=-1+1-1+1....-1+1=0\)
=> x=-1 là nghiệm của A
b)
\(B=x+x^2+...+x^{100}\\ =>B.x=x^2+x^3+...+x^{101}\\ \Rightarrow B\left(x-1\right)=x^{101}-x\\ \Rightarrow B=\dfrac{x^{101}-x}{x-1}=\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{\dfrac{1}{2}-1}\)
a) \(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{99}+\left(-1\right)^{100}\\ =-1+1+\left(-1\right)+...+\left(-1\right)+1\\ =0\)
=> x=-1 là nghiệm đa thức A(x)
b) \(A\left(\dfrac{1}{2}\right)=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}+\left(\dfrac{1}{2}\right)^{100}\\ \Rightarrow2.A\left(\dfrac{1}{2}\right)=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\\ \Rightarrow2.A\left(\dfrac{1}{2}\right)-A\left(\dfrac{1}{2}\right)=1-\left(\dfrac{1}{2}\right)^{100}\\ \Rightarrow A\left(\dfrac{1}{2}\right)=\dfrac{2^{100}-1}{2^{100}}\)