1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Bài 3:
a: Xét ΔCNB vuông tại N và ΔCMA vuông tại M có
\(\widehat{C}\) chung
Do đó: ΔCNB~ΔCMA
=>\(\dfrac{CN}{CM}=\dfrac{CB}{CA}\)
=>\(CN\cdot CA=CM\cdot CB\)
b: Xét ΔANH vuông tại N và ΔAMC vuông tại M có
\(\widehat{NAH}\) chung
Do đó: ΔANH~ΔAMC
=>\(\dfrac{AN}{AM}=\dfrac{AH}{AC}\)
=>\(AN\cdot AC=AH\cdot AM\)
Bài 2:
Xét ΔOAE và ΔODB có
\(\dfrac{OA}{OD}=\dfrac{OE}{OB}\left(\dfrac{2}{3}=\dfrac{6}{9}\right)\)
\(\widehat{O}\) chung
Do đó: ΔOAE~ΔODB
=>\(\widehat{OEA}=\widehat{OBD}\)
Bài 1:
a: \(AH^2=HB\cdot HC\)
=>\(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
Xét ΔHAC vuông tại H và ΔHBA vuông tại H có
\(\dfrac{HA}{HB}=\dfrac{HC}{HA}\)
Do đó: ΔHAC~ΔHBA
b: Ta có: ΔHAC~ΔHBA
=>\(\widehat{HAC}=\widehat{HBA}\)
mà \(\widehat{HAC}+\widehat{C}=90^0\)(ΔHAC vuông tại H)
nên \(\widehat{B}+\widehat{C}=90^0\)
=>ΔABC vuông tại A