Cho \(\frac{x+y}{t+z}=\frac{4}{7}\) và \(7y=4z\).Tính \(B=\frac{x}{t}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2x}{y+z+t}-\frac{3y}{x+z+t}+\frac{4z}{x+y+t}-\frac{5t}{x+y+z}\)
\(B=\frac{2x}{-x}-\frac{3y}{-y}+\frac{4z}{-z}-\frac{5t}{-t}\)
\(B=-2+3-4+5=2\)
\(\frac{y+z+t}{x}=\frac{x+z+t}{y}=\frac{y+x+t}{z}=\frac{y+z+x}{t}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+t}{x}=\frac{x+z+t}{y}=\frac{y+x+t}{z}=\frac{y+z+x}{t}=\frac{y+z+t+x+z+t+y+x+t+y+z+x}{x+y+z+t}\)
\(=\frac{3x+3y+3z+3t}{x+y+z+t}=\frac{3.\left(x+y+z+t\right)}{x+y+z+t}=3\)
\(\Rightarrow\frac{y+z+t}{x}=3\Rightarrow y+z+t=3x\)
\(\frac{x+z+t}{y}=3\Rightarrow x+z+t=3y\)
\(\frac{y+x+t}{z}=3\Rightarrow y+x+t=3z\)
\(\frac{y+z+x}{t}=3\Rightarrow y+z+x=3t\)
\(M=\frac{2x}{y+z+t}-\frac{3y}{x+z+t}-\frac{4z}{x+y+t}-\frac{5t}{x+y+z}\)
\(\Rightarrow M=\frac{2x}{3x}-\frac{3y}{3y}-\frac{4z}{3z}-\frac{5t}{3t}\)
\(M=\frac{2}{3}-\frac{3}{3}-\frac{4}{3}-\frac{5}{3}\)
\(M=\frac{2-3-4-5}{3}\)
\(M=\frac{-10}{3}\)
Vậy \(M=\frac{-10}{3}\)
Tham khảo nhé~
a,
Ta có 3x=2y
=> x/2=y/3
<=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5
<=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42
b,
2x/3=3y/4=4z/5=12x/18=12y/16=12z/15
Theo tính chất của dãy tỉ số bằng nhau ta có
12x/18=12y/16=12z/15=12x+12y+12z/18+16+...
=12(x+y+z)/49= 12.49/49=12
Suy ra:
x=18,
y=16,
z=15
a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8
Ta được: x= 10.28/8=35
y= 6.28/8=21
z=24.28/8=84
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
Do đó: x=20; y=30; z=42
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
a) \(\frac{x}{1}=\frac{y}{3}=\frac{4z}{15}=\frac{6x+7y+8z}{1.6+3.7+15.2}=\frac{456}{57}=8\)
x=8
y=24
z=30
\(3x=y\)=> \(\frac{x}{1}=\frac{y}{3}\)
hay \(\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\)=> \(\frac{y}{4}=\frac{z}{5}\)
hay \(\frac{y}{12}=\frac{z}{15}\)
suy ra: \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
đến đây bạn ADTCDTSBN nhé
a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{2+x-y}{4011}=\frac{2+4009}{4011}=1\)
=> \(\begin{cases}x-1=2005\\3-y=2006\end{cases}\)\(\Leftrightarrow\begin{cases}x=2006\\y=-2003\end{cases}\)
b) Có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nahu ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6\cdot4+7\cdot12+8\cdot15}=\frac{456}{228}=2\)
=> \(\begin{cases}x=8\\y=24\\z=30\end{cases}\)
c) Có: \(x-24=y\Rightarrow x-y=24\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)
=> \(\begin{cases}x=42\\y=18\end{cases}\)
Bài 1:
a) Và \(x-y+z-t=\) mấy thế bạn?
b)
Ta có: \(6x=5y\)
=> \(\frac{x}{y}=\frac{5}{6}.\)
=> \(\frac{x}{5}=\frac{y}{6}\) (1)
\(7y=8z\)
=> \(\frac{y}{z}=\frac{8}{7}.\)
=> \(\frac{y}{8}=\frac{z}{7}\) (2)
Từ (1) và (2) => \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7}.\)
Có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{40}=\frac{y}{48}.\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{48}=\frac{z}{42}.\)
=> \(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\) và \(x+y-z=69.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y-z}{40+48-42}=\frac{69}{46}=\frac{3}{2}.\)
\(\left\{{}\begin{matrix}\frac{x}{40}=\frac{3}{2}\Rightarrow x=\frac{3}{2}.40=60\\\frac{y}{48}=\frac{3}{2}\Rightarrow y=\frac{3}{2}.48=72\\\frac{z}{42}=\frac{3}{2}\Rightarrow z=\frac{3}{2}.42=63\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(60;72;63\right).\)
Chúc bạn học tốt!
\(\Rightarrow\left(x+y\right)\cdot7=\left(t+z\right)\cdot4\)
\(7x+7y=4z+4t\)
\(7x=4z+4t-7y\)
\(7x=4z-4z+4t\)
\(7x=4t\)
\(\Rightarrow\frac{x}{t}=\frac{7}{4}\)
Cho mk sửa lại:
\(7x=4t\Rightarrow\frac{7x}{28}=\frac{4t}{28}\Rightarrow\frac{x}{4}=\frac{t}{7}\Rightarrow\frac{x}{t}=\frac{4}{7}\)