K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

ta có \(2B=2x^2-4xy+4y^2+10x\) 

                \(=\left(x^2-4xy+4y^2\right)+\left(x^2+10x+25\right)-25\)

                 \(=\left(x-2y\right)^2+\left(x+5\right)^2-25\)

vì \(\left(x-2y\right)^2>=0;\left(x+5\right)^2>=0\)

=>\(2B>=-25=>b>=-\frac{25}{2}\)

dấu = xảy ra <=> \(\hept{\begin{cases}x=-5\\y=-10\end{cases}}\)

b)   ta có 

\(Q=x^2-6xy+9y^2+x^2-x+\frac{1}{4}+\frac{3}{4}\)

     \(=\left(x-3y\right)^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> Q>=3/4

dấu = xảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

30 tháng 8 2018

B tự trình bày nhé, mk chỉ hướng dẫn thôi.

\(A=x^2-x-1=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{5}{4}=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{5}{4}\forall x\)

\(B=\left(4x^2-2.2xy+y^2\right)+\left(y^2-2.y.2+2^2\right)-4=\left(2x-y\right)^2+\left(y-2\right)^2-4\ge-4\forall x;y\)

\(M=-x^2+6xy-9y^2+2=-\left(x^2+2.x.3y+9y^2\right)+2=-\left(x+3y\right)^2+2\ge2\forall x;y\)

Tham khảo nhé~

27 tháng 1 2022

H=\(x^6-2x^3+x^2-2x+2\)

\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)

\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)

Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)

⇒ MinH=0 ⇔ \(x=1\)