\(\dfrac{a^2}{b^2}\)=\(\dfrac{ac}{bd}\)=\(\dfrac{c^2}{d^2}\)các bạn giúp mình với mình đang gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức tỉ lệ phân số ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)
Lời giải:
$S=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+...+\frac{69}{7^{70}}$
$7S=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$
$6S=7S-S=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}}$
$42S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$
$\Rightarrow 42S-6S=(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}})-(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}})$
$\Rightarrow 36S=1-\frac{69}{7^{69}}-\frac{1}{7^{69}}+\frac{69}{7^{70}}$
Hay $36S=1-\frac{69.7-7-69}{7^{70}}=1-\frac{407}{7^{70}}$
$\Rightarrow S=\frac{1}{36}(1-\frac{407}{7^{70}})$
có thể coi a=b=c=d từ đó thì ra 2 nghiệm đều thỏa mãn biểu thức là:
x = {-2;2}
N=1/2+1/22+...+1/210
2N=1+1/2+...+1/29
2N-N=1-1/210=1-1/1024=1023/1024
Giải:
N=1/2+1/22+1/23+...+1/29+1/210
2N=1+1/2+1/22+...+1/28+1/29
2N-N=(1+1/2+1/22+...+1/28+1/29)-(1/2+1/22+1/23+...+1/29+1/210)
N=1-1/210=1023/1024
Chúc bạn học tốt!
pi/2<a,b<pi
=>cos a<0; cos b<0; sin a>0; sin b>0
\(cosa=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5};sina=\sqrt{1-\left(-\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=-3/5:4/5=-3/4; tan b=12/13:(-5/13)=-12/5
\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana\cdot tanb}\)
\(=\dfrac{-\dfrac{3}{4}+\dfrac{-12}{5}}{1-\dfrac{-3}{4}\cdot\dfrac{-12}{5}}=\dfrac{63}{16}\)
sin(a-b)=sina*cosb-sinb*cosa
\(=\dfrac{3}{5}\cdot\dfrac{-5}{13}-\dfrac{-4}{5}\cdot\dfrac{12}{13}=\dfrac{-15+48}{65}=\dfrac{33}{65}\)
a) Do \(\left|1+2x\right|\ge0\Rightarrow\dfrac{-1}{4}\left|1+2x\right|\le0\)
\(\Rightarrow A=2,25-\dfrac{1}{4}\left|1+2x\right|\le2,25\)
\(maxA=2,25\Leftrightarrow x=-\dfrac{1}{2}\)
b) Do \(\left|2x-3\right|\ge0\Rightarrow3+\dfrac{1}{2}\left|2x-3\right|\ge3\)
\(\Rightarrow B=\dfrac{1}{3+\dfrac{1}{2}\left|2x-3\right|}\le\dfrac{1}{3}\)
\(maxB=\dfrac{1}{3}\Leftrightarrow x=\dfrac{3}{2}\)
Đây nha bạn:
A=5.72+7.125+12.197+19.289+28.3911+39.401
=7−55.7+12−77.12+19−1212.19+28−1919.28+39−2828.39+40−3939.40=5.77−5+7.1212−7+12.1919−12+19.2828−19+28.3939−28+39.4040−39
=15−17+17−112+112−119+119−128+128−139+139−140=51−71+71−121+121−191+191−281+281−391+391−401
=15−140=740=
Em cần làm gì với biểu thức này?
Chắc là phải tính đấy cô Thương Hoài