K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

Vì \(\frac{a+2007}{a-2007}=\frac{b+2008}{b-2008}\)

Suy ra: \(\frac{a+2007}{b+2008}=\frac{a-2007}{b-2008}\)

Theo tính chất dãy tỉ số bằng nhau thì:

\(\frac{a+2007}{b+2008}=\frac{a-2007}{b-2008}=\frac{\left(a+2007\right)+\left(a-2007\right)}{\left(b+2008\right)+\left(b-2008\right)}=\frac{\left(a+2007\right)-\left(a-2007\right)}{\left(b+2008\right)-\left(b-2008\right)}\)

Lấy 2 phân số cuối cùng của dãy tỉ số trên và rút gọn ta được:

\(\frac{2a}{2b}=\frac{2.2007}{2.2008}\)

\(\Rightarrow\frac{a}{b}=\frac{2007}{2008}\)

4 tháng 9 2017

Ta có:
\(\frac{a+2017}{a-2017}=\frac{b+2018}{b-2018}\)

=>\(\frac{a+2017}{b+2018}=\frac{a-2017}{b-2018}\)

=>\(\frac{a}{b}=\frac{2017}{2018}\)

=>\(\frac{a}{2017}=\frac{b}{2018}\)

Vậy nếu \(\frac{a+2017}{a-2017}=\frac{b+2018}{b-2018}\)thì \(\frac{a}{2017}=\frac{b}{2018}\)

NV
9 tháng 3 2019

\(A=\left(2018^{2017}+2017^{2017}\right)^{2018}\) ; \(B=\left(2018^{2018}+2017^{2018}\right)^{2017}\)

Ta có:

\(B=\left(2018.2018^{2017}+2017.2017^{2017}\right)^{2017}\)

\(\Rightarrow B< \left(2018.2018^{2017}+2018.2017^{2017}\right)^{2017}\)

\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2017}.2018^{2017}\)

\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2017}.\left(2018^{2017}+2017^{2017}\right)\)

\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2018}=A\)

\(\Rightarrow B< A\)

11 tháng 5 2018

Đề đúng phải là \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nhé 

Vì \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nên \(\left(a^{2017}+b^{2017}\right)^2=4.a^{2016}.b^{2016}\)

Mà \(\left(a^{2017}+b^{2017}\right)^2\ge4.a^{2017}.b^{2017}\)

Suy ra \(4a^{2016}b^{2016}\ge4a^{2017}b^{2017}\)

<=> \(ab\le1\)

<=> \(1-ab\ge0\)

Suy ra P = 2018 - 2018ab = 2018(1 - ab)  \(\ge0\)

11 tháng 5 2018

\(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)    với \(a,b\in R\) 

nếu  \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)  thì  \(P=2018>0\)

nếu  \(\orbr{\begin{cases}a\ne0\\b\ne0\end{cases}}\)  thì xảy ra 2 trường hợp như sau 

\(TH1\)\(a,b\)  trái dấu   \(\Rightarrow P>0\)

\(TH2\)  \(a,b\)  cùng dấu  

vì \(2.a^{2018}.b^{2018}>0\forall a,b\)  

\(\Rightarrow a^{2017}+b^{2017}>0\)   để 2 đẳng thức tồn tại dấu \("="\)

\(\Rightarrow a,b>0\)  ( cùng dương)

có \(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)

\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(a.b\right)^{2019}}}\)

\(\Rightarrow ab\le1\)

\(\Rightarrow2018-2018ab>2018-2018=0\)

dấu \("="\)  xảy ra \(\Leftrightarrow a=b=1\)

vậy \(P\)  luôn không âm 

13 tháng 4 2019

\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)

Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)

\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)

Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)

Vậy A>B

8 tháng 10 2018

Mk đang cần gấp !!! Giúp mk nha các bn!!!

link nà:https://olm.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+:+A=2017%5E2017/2018%5E2017+1B=2017%5E2016+1/2017%5E2017+1+&id=862033

21 tháng 4 2018

Thanks

7 tháng 8 2017

Bằng nhau nha