CMR nếu \(x+\frac{1}{x}\)là một số nguyên thì \(x^n+\frac{1}{x^n}\)cũng là 1 số nguyên \(\forall n\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:
\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)
Ta thấy 34 = 52 + 32 nên ta có bảng:
2x-1 | 5 | -5 | 3 | -3 |
x | 3 | -2 | 2 | -1 |
2y-1 | 5 | -5 | 3 | -3 |
y | 3 | -3 | 2 | -1 |
Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)
Giả sử \(x>y>z>t\)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x+y+z+t}{x+y+z+t}=1\)
\(\Rightarrow\)\(M>1\)\(\left(1\right)\)
Lại có : ( phần này áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\) )
\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\) ( cộng tử và mẫu cho t )
\(\frac{y}{x+y+t}< \frac{y+z}{z+y+z+t}\) ( cộng tử và mẫu cho z )
\(\frac{z}{y+z+t}< \frac{x+z}{x+y+z+t}\) ( cộng tử và mẫu cho x )
\(\frac{t}{x+z+t}< \frac{y+t}{x+y+z+t}\) ( cộng tử và mẫu cho y )
\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow\)\(M< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< M< 2\)
Vậy M không là số tự nhiên với mọi \(x,y,z,t\inℕ\)
Chúc bạn học tốt ~
Ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+z}{x+y+z+t}\)
\(\frac{t}{x+y+z+t}< \frac{t}{z+t+x}< \frac{t+y}{x+y+z+t}\)
Cộng vế với vế ta được :
\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}< \frac{t}{z+t+x}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(\Rightarrow1< M< 2\) Hay M ko là số tự nhiên
Với n = 0 thì đúng.
Dễ thấy khi \(x^a+\frac{1}{x^a}=x^{-a}+\frac{1}{x^{-a}}\)nên ta chỉ cần chứng minh nó đúng với n \(\in\)Z+
Với n = 2 thì \(\Rightarrow x^2+\frac{1}{x^2}+2=\left(x+\frac{1}{x}\right)^2\)là số nguyên
\(\Rightarrow x^2+\frac{1}{x^2}\)là số nguyên.
Giả sử nó đúng đến n = k
\(\Rightarrow\hept{\begin{cases}\frac{1}{x^{k-1}}+x^{k-1}\\x^k+\frac{1}{x^k}\end{cases}}\)đều là số nguyên.
Ta chứng minh với n = k + 1 thì
xk+1 + \(\frac{1}{x^{k+1}}\)cũng là số nguyên
Ta có:
\(\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)=x^{k+1}+\frac{1}{x^{k+1}}+x^{k-1}+\frac{1}{x^{k-1}}\)
\(\Rightarrow x^{k+1}+\frac{1}{x^{k+1}}\)là số nguyên.
Vậy ta có điều phải chứng minh là đúng.