cho tam giác ABC vuông tại a có BD là phân giác , kẻ de vuông góc với BC ( E thuộc BC) . gọi F là giao điểm của AB và DE
chứng minh rằng
a) : tam giác ADB=tam giác EDB
b): BF=BC
c): AE song song với FC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc FC
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: AB=BE(hai cạnh tương ứng)
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
c) Ta có: ΔADF=ΔEDC(cmt)
nên AF=EC(Hai cạnh tương ứng)
Ta có: BA+AF=BF(A nằm giữa B và F)
BE+EC=BC(E nằm giữa B và C)
mà BA=BE(cmt)
và AF=EC(Cmt)
nên BF=BC
Xét ΔBAE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Ta có: ΔBAE cân tại B(cmt)
nên \(\widehat{BAE}=\dfrac{180^0-\widehat{B}}{2}\)(Số đo của một góc ở đáy trong ΔBAE cân tại B)(1)
Xét ΔBFC có BF=BC(cmt)
nên ΔBFC cân tại B(Định nghĩa tam giác cân)
Ta có: ΔBFC cân tại B(cmt)
nên \(\widehat{BFC}=\dfrac{180^0-\widehat{B}}{2}\)(Số đo của một góc ở đáy trong ΔBFC cân tại B)(2)
Từ (1) và (2) suy ra \(\widehat{BAE}=\widehat{BFC}\)
mà \(\widehat{BAE}\) và \(\widehat{BFC}\) là hai góc ở vị trí đồng vị
nên AE//FC(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét 2 tg vuông BAD và BED có:
BD là cạnh chung
góc ABD = góc EBD (BD là phân giác góc B)
\(\Rightarrow\) \(\Delta\) vuông BAD = \(\Delta\) vuông BED (cạnh huyền - góc nhọn)
\(\Rightarrow\) AB = AE (2 cạnh tương ứng)
b) Xét 2 tg vuông DAF và DEC có:
DA = DE(2 cạnh tương ứng do tg BAD = tg BED)
góc ADF = góc EDC (đối đỉnh)
\(\Rightarrow\) \(\Delta\) vuông DAF = \(\Delta\) vuông DEC (cạnh góc vuông - góc nhọn)
\(\Rightarrow\) DF = DC (2 cạnh tương ứng)
\(\Rightarrow\Delta CDF\) là tg cân
D thuộc AC mới đúng ạ.
a) Xét tam giác BDA và tam giác BDE có:
BD chung (gt)
BA=BE (gt)
ABD= EBD (BD là tia phân giác)
=> Tam giác BDA= Tam giác BDE(c.g.c)
Nhớ tick và cảm ơn nhé.
b) Ta có: Tam giác BDA= tam giác BDE(cmt)
=> A=E( 2 góc tương ứng). mà A=90o
=> góc E=90o(1)
K= 90o (gt) (2)
Từ 1,2 => DE//AK( từ vuông góc đến song song)
Nhớ tick và cảm ơn nhé.
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
b: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
=>BD là đường trung trực của AE
hay BD\(\perp\)AE
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: ta có; ΔBAD=ΔBED
=>BA=BE
Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBF}\) chung
Do đó: ΔBEF=ΔBAC
=>BF=BC
c: Xét ΔBFC có \(\dfrac{BA}{BF}=\dfrac{BE}{BC}\)
nên AE//FC