Cho x,y là số thực. CMR:
[x]+[y]+1>=[x+y]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
TH 1: \(x;y\le0\)
=> \(\left|x\right|+\left|y\right|=-x+\left(-y\right)\)và \(x+y\le0\)
=> \(\left|x+y\right|=-\left(x+y\right)=-x+\left(-y\right)\)
=> \(\left|x\right|+\left|y\right|=\left|x+y\right|\)\(\left(1\right)\)
TH 2: \(x\le0;y\ge0;x+y\le0\)
=> \(\left|x\right|+\left|y\right|=-x+y\)và \(\left|x+y\right|=-\left(x+y\right)=-x+\left(-y\right)\)
Mà \(y\ge0\)
=> \(y\ge-y\)
=> \(-x+y\ge-x+\left(-y\right)\)
=> \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\left(2\right)\)
TH 3: \(x\le0;y\ge0;x+y\ge0\)
=> \(\left|x\right|+\left|y\right|=-x+y\)và \(\left|x+y\right|=x+y\)
Mà \(x\le0\)
=> \(-x\ge x\)
=> \(-x+y\ge x+y\)
=> \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\left(3\right)\)
TH 4: \(x\ge0;y\le0;x+y\le0\)
=> \(\left|x\right|+\left|y\right|=x+\left(-y\right)\)và \(\left|x+y\right|=-\left(x+y\right)=-x+\left(-y\right)\)
Mà \(x\ge0\)
=> \(x\ge-x\)
=> \(x+\left(-y\right)\ge-x+\left(-y\right)\)
=> \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\left(4\right)\)
TH 5: \(x;y\ge0\)
=> \(\left|x\right|+\left|y\right|=x+y\)và \(\left|x+y\right|=x+y\)
=> \(\left|x\right|+\left|y\right|=\left|x+y\right|\)\(\left(5\right)\)
Từ (1), (2), (3), (4), và (5) => \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(x^2+y^2-x-y+1=\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}\)
\(=\left(x^2-2.x.\frac{1}{x}+\frac{1}{2^2}\right)+\left(y^2-2.x.\frac{1}{2}+\frac{1}{2^2}\right)+\frac{1}{2}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{1}{2}>0\)(đúng \(\forall x;y\in R\))
\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)
Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)
bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)
a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)
\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)
\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)
Vì \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)
nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)
b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)
nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)