K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

a) \(\left(5n+7\right)\left(4n+6\right)\)

\(=\left(5n+7\right)4n+\left(5n+7\right)6\)

\(=20n^2+28n+30n+32\)

\(=20n^2+58n+32\)

\(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)

b) \(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right)6n+\left(8n+1\right)5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(\left(48n^2+46n\right)⋮2\)\(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)

c) \(n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(n-1+n-2\right)\)

\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\)\(n\left(n+1\right)\left(n+2\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)

15 tháng 1 2017

k có dâu hiệu chia hết cho 35 , bạn ns mình dâu hiệu mình làm cho

15 tháng 1 2017

36n - 26n \(⋮\) 35 ( n \(\in\) N )

=> 36n - 26n = 16n

→ 16n => 1 . n

=> TH n là các số chia hết cho 35

\(\Rightarrow3^{6n}-2^{6n}⋮35\)

15 tháng 1 2017

Ta có:3^6.n2^6.n=n.(3^6-2^6)=n.665

Vì 3^6.n-2^6.n chia hết cho 35 và 665 chia hết cho 35 nên n chia hết cho 35

Vậy n chia hết cho 35 ------->đpcm

15 tháng 12 2019

3^2n+2+2^6n+1=9^n.3^2+54^n.2=9^n.9+9^n.2-9^n.2+54^n.2=9^n(9+2)+2(54^n-9^n)

ta có 9^n(9+2) chia hết cho 11 (1)

2(54^n-9^n) chia hết cho (54-9) =>2(54^n-9^n) chia hết cho 11 (2)

từ (1) và (2) =>3^2n+2+2^6n+1 chia hết cho 11

7 tháng 7 2015

6^2n+ 3^(n+2)+ 3^n = 6^2n + 3^n x 3^2+ 3^n = 6^2n + 3^n x 9 + 3^n = 6^2n + 3^n x 10 
6^2n + 3^n x 10 dd 6^2n + 3^n x (-1) dd 3^n x ( 3^n x 2^2n) - 3^n dd 3^n x (3^n x 4^n -1)( mod 11) 
(3^n x 4^n -1) dd 12^n -1 dd 1^n - 1 dd 0 
=>6^2n + 3^(n+2)+ 3^n dd 0(mod 11) 
=> dpcm