tìm số tự nhiên n và a biết 1+2+3....+n = aaa
giải chi tiết giúp mk nha
3x-1+2*3x=189
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số có 2 chữ số
→10≤n≤99→21≤2n+1≤199
Vì 2n+1 là số chính phương→2n+1∈{25;36;49,64;81;100;121;144;169;196}
Vì 2n+1 là số lẻ→2n+1∈{25;49;81;121;169}
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
Vì n là số có 2 chữ số
\(\rightarrow10\le n\le99\)\(\rightarrow21\le2n+1\le199\)
Vì 2n+1 là số chính phương\(\rightarrow2n+1\in\left\{25;36;49,64;81;100;121;144;169;196\right\}\)
Vì 2n+1 là số lẻ\(\rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
1. Tìm x
a) 1+2+3+...+x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x = 20
b) \(32.3^x=9.3^{10}+5.27^3\)
=>\(32.3^x=9.3^{10}+5.3^9\)(\(27^3=\left(3^3\right)^3=3^9\))
=>\(32.3^x=9.3.3^9+5.3^9\)
=>\(32.3^x=3^9\left(9.3+5\right)\)
=>\(32.3^x=3^9.32\)
=>x = 9
2.
Ta có 2A = 3A - A
=> 2A = \(3\left(1+3+3^2+3^3+....+3^{10}\right)\)\(-\)\(1-3-3^2-3^3-....-3^{10}\)
=> 2A = \(3+3^2+3^3+.....+3^{11}-\)\(1-3-3^2-3^3-...-3^{10}\)
=> 2A = \(3^{11}-1\)
=> 2A+1 = \(3^{11}-1+1\)=\(3^{11}\)
=> n = 11
Ta có : a)1 + 2 + 3 + ... + x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 420
=> x(x + 1) = 20.21
=> x = 20
1+2+3+4+...+n=465
\(\frac{n.\left(n+1\right)}{2}=465\)
n.(n+1)=465.2
n.(n+1)=912
n.(n+1)=30.31
=>n=30
Vào đây:Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Ta có:
1+ 2+ 3+ 4+...+ n= 1999
Suy ra: (n+ 1)n* 2= 1999
(n+ 1)n= 3998
Vì tích của 2 số tự nhiên liên tiếp không có tận cùng là 8 nên không có điều kiện nào thỏa mãn.
Bài này áp dụng công thức chung để tỉnh tổng: 1+2+3+...+n = \(\frac{n\left(n+1\right)}{2}\)=1999
<=> n(n + 1) = 2.1999 [ số 1999 là số nguyên tố] , ko có \(n\in N\) thỏa mãn
Do đó: ko có số tự nhiên n nào thỏa mãn đề bài
Ta có: \(\overline{aaa}=1+2+...+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow\frac{n\left(n+1\right)}{2}=111a\Rightarrow n\left(n+1\right)=2.111a=2.3.37.a\)
Vì n(n+1) chia hết cho 37 nên một trong hai số chia hết cho 37
Mà \(\frac{n\left(n+1\right)}{2}\) là số có ba chữ số nên n và n+1 nhỏ hơn 74 => n=37 hoặc n+1=37
Nếu n=37 thì n+1=38 => \(\overline{aaa}=\frac{n\left(n+1\right)}{2}=\frac{37.38}{2}=703\) (loại)
Nếu n+1=37 thì n=36 => \(\overline{aaa}=\frac{n\left(n+1\right)}{2}=\frac{36.37}{2}=666\) (thỏa mãn)
Vậy n=36 và aaa = 666