Bài 2: Cho hình thang ABCD (AB//DC) có AD < DC
CMR : AD + BC > CD – AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình thang ABCD ( AB//CD) có góc C < góc D. Chứng minh rằng: AC> BD?
Ke AM va BN vg voi CD , vi goc C nho hon goc D =>CN >DM (co the cm bang ct luong giac) => CM>DN, ad ct pytago cho 2 tg v AMC va BND thi => AC>BD
Qua P kẻ đường thẳng song song với AD cắt CD tại P. Khi đó dễ thấy \(AB=DP\). Từ đó \(DC-AB=DC-DM=CM\)
Mặt khác, \(AD=BM\) nên \(AD+BC=BM+BC\).
Hiển nhiên \(CM< BM+BC\). Điều này dẫn đến \(DC-AB< AD+BC\) (đpcm)
Vẽ tia Bx song song với AD và gọi AD giao với DC la E
Ta có: BE song song với AD
AB song song với DE
=)AB=DE ; AD=BE
BE+BC>EC (bất đẳng thức tam giác)
=)AD+BC>DC-DE =)AD+BC>DC-AB
2, Tự vẽ hình nha bạn :
Trên nửa mặt phẳng bờ \(CD\) có chứa điểm \(A\) , vẽ tia \(Cx\) sao cho \(\widehat{DCx}=\widehat{ADC}\) , \(Cx\) cắt \(AB\) tại \(E\)
Ta có : \(\widehat{DCB}< \widehat{ADC}\left(gt\right)\)
\(\Rightarrow\widehat{DCB}=\widehat{DCx}\)
\(\Rightarrow\) Tia \(CB\) nằm giữa hai tia \(CD\) và \(CE\)
\(\Rightarrow\) Điểm \(B\) nằm giữa 2 điểm \(A\) và \(E\)
Tứ giác : \(AECD\) có : \(AE//CD\) và \(\widehat{ADC}=\widehat{DCE}\)
\(\Rightarrow\)\(AECD\) là hình thang cân
\(\Rightarrow\Delta ADE=\Delta ECA\left(c-g-c\right)\) ( TỰ CHỨNG MINH NHÉ )
\(\Rightarrow\widehat{AED}=\widehat{CAE}\)
Gọi \(O\) là giao điểm của\(AC\) và \(BD\)
\(\Delta OAB\) có \(\widehat{DBE}\) là góc ngoài
\(\Rightarrow\widehat{DBE}>\widehat{OAB}\)
\(\Rightarrow\widehat{DBE}>\widehat{BED}\)
\(\Delta BOE\) có : \(\widehat{DBE}>\widehat{BEC}\)
\(\Rightarrow DE>BD\)
Mà \(DE=AC\)
\(\Rightarrow AC>BD\left(dpcm\right)\)
A B D C
cho bn hình ,tự giải nha,mk đg bận k giải đc,sorry