\(\dfrac{x}{3}\)-\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\)
tìm x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b:
ĐKXĐ: x<>0
\(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{6+xy}{3x}=\dfrac{1}{6}\)
=>\(6\left(6+xy\right)=3x\)
=>\(x=2\left(6+xy\right)=12+2xy\)
=>\(x\left(1-2y\right)=12\)
mà x,y là các số nguyên
nên \(\left(x;1-2y\right)\in\left\{\left(12;1\right);\left(-12;-1\right);\left(4;3\right);\left(-4;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(12;0\right);\left(-12;1\right);\left(4;-1\right);\left(-4;2\right)\right\}\)
c: ĐKXĐ: y<>-1
\(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)
=>\(\dfrac{xy+x+3}{3\left(y+1\right)}=\dfrac{1}{6}\)
=>\(\dfrac{2\left(xy+x+3\right)}{6\left(y+1\right)}=\dfrac{y+1}{6\left(y+1\right)}\)
=>\(2xy+2x+6=y+1\)
=>\(2x\left(y+1\right)-\left(y+1\right)=-6\)
=>\(\left(2x-1\right)\left(y+1\right)=-6\)
mà x,y là các số nguyên
nên \(\left(2x-1;y+1\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(0;5\right);\left(2;-3\right);\left(-1;1\right)\right\}\)
a, \(\dfrac{x}{2}=-\dfrac{5}{y}\Rightarrow xy=-10\Rightarrow x;y\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
y | -10 | 10 | -5 | 5 | -2 | 2 | -1 | 1 |
c, \(\dfrac{3}{x-1}=y+1\Rightarrow\left(y+1\right)\left(x-1\right)=3\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 1 | 1 | -1 | 3 | -3 |
y + 1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 2 | -4 | 0 | -2 |
b: =>xy=12
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
mình ko chép đề bài nha
a) \(\dfrac{16}{5}\): \(\dfrac{7}{3}\) : y =\(\dfrac{12}{7}\)
\(\dfrac{48}{35}\): y = \(\dfrac{12}{7}\)
y = \(\dfrac{48}{35}\): \(\dfrac{12}{7}\)
y = \(\dfrac{4}{5}\)
a) \(\dfrac{1}{2}:y\times\dfrac{3}{5}=\dfrac{4}{3}+\dfrac{3}{4}\)
\(\dfrac{1}{2}:y\times\dfrac{3}{5}=\dfrac{25}{12}\)
\(\dfrac{1}{2}:y=\dfrac{25}{12}:\dfrac{3}{5}\)
\(\dfrac{1}{2}:y=\dfrac{125}{36}\)
\(y=\dfrac{1}{2}:\dfrac{125}{36}\)
\(y=\dfrac{18}{125}\)
b) \(\dfrac{4}{3}-\dfrac{1}{2}\times y=1\)
\(\dfrac{1}{2}\times y=\dfrac{4}{3}-1\)
\(\dfrac{1}{2}\times y=\dfrac{1}{3}\)
\(y=\dfrac{1}{3}:\dfrac{1}{2}\)
\(y=\dfrac{2}{3}\)
c) \(\dfrac{1}{4}+y:\dfrac{1}{3}=\dfrac{5}{6}\)
\(y:\dfrac{1}{3}=\dfrac{5}{6}-\dfrac{1}{4}\)
\(y:\dfrac{1}{3}=\dfrac{7}{12}\)
\(y=\dfrac{7}{12}\cdot\dfrac{1}{3}\)
\(y=\dfrac{7}{36}\)
\(\dfrac{2}{5}\) x y : \(\dfrac{7}{4}\) = \(\dfrac{7}{8}\)
\(\dfrac{2}{5}\) x y = \(\dfrac{7}{8}\) x \(\dfrac{7}{4}\)
\(\dfrac{2}{5}\) x y = \(\dfrac{49}{32}\)
y = \(\dfrac{49}{32}\) : \(\dfrac{2}{5}\)
y = \(\dfrac{245}{64}\)
2\(\dfrac{2}{5}\): y x 1\(\dfrac{1}{4}\) = 2\(\dfrac{3}{5}\)
\(\dfrac{12}{5}\): y x \(\dfrac{5}{4}\) = \(\dfrac{13}{5}\)
\(\dfrac{12}{5}\): y = \(\dfrac{13}{5}\): \(\dfrac{5}{4}\)
\(\dfrac{12}{5}\): y = \(\dfrac{52}{25}\)
y = \(\dfrac{12}{5}\): \(\dfrac{52}{25}\)
y = \(\dfrac{15}{13}\)
1/2-2y=9/20
=>2y=1/2-9/20=1/20
=>y=1/20:2=1/40
b,3/5:4/3:y=2+7/10=9/20:y=27/10
=>y=9/20:27/10=1/6
c,y+y*3/2-y*1/2=1/10
=>y(1+3/2-1/2)=1/10
=>2y=1/10
=>y=1/10:2=1/20
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
$\Rightarrow x+y+z\geq 3$
Áp dụng BĐT AM-GM:
$\frac{y^2}{2}+\frac{1}{2}\geq y$
$\frac{z^3}{3}+\frac{1}{3}+\frac{1}{3}\geq z$
$\Rightarrow P+\frac{7}{6}\geq x+y+z=3$
$\Rightarrow P\geq \frac{11}{6}$
Giá trị này đạt tại $x=y=z=1$
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
\(\dfrac{x}{3}-\dfrac{1}{y}=\dfrac{1}{2}\)
=>\(\dfrac{xy-3}{3y}=\dfrac{1}{2}\)
=>2(xy-3)=3y
=>2xy-3y=6
=>y(2x-3)=6
=>\(\left(2x-3;y\right)\in\left\{\left(1;6\right);\left(6;1\right);\left(-1;-6\right);\left(-6;-1\right);\left(2;3\right);\left(3;2\right);\left(-2;-3\right);\left(-3;-2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;6\right);\left(\dfrac{9}{2};1\right);\left(1;-6\right);\left(-\dfrac{3}{2};-1\right);\left(\dfrac{5}{2};3\right);\left(3;2\right);\left(\dfrac{1}{2};-3\right);\left(0;-2\right)\right\}\)