Tính giá trị \(Q=\frac{x-y}{x+y}\)biết y # 0, X + y # 0 và x2 - 2y2 =xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x+y}{z}+1+\frac{x+z}{y}+1+\frac{y+z}{x}+1-3\)
\(A=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-3\)
\(A=\left(x+y+z\right)\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=\left(z+y+z\right)\cdot0-3=-3\)
Vậy, A = -3
\(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xyz+xz+z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))
\(=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))
\(=\frac{xz+z+1}{xz+z+1}=1\)
+, Nếu x+y+z+t = 0 => M = -1 + (-1) + (-1) + (-1) = -4
+, Nếu x+y+z+t khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/y+z+t = y/x+z+t = z/x+t+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3
=> x=1/3.(y+z+t) ; y=1/3.(z+x+t) ; z=1/3.(x+y+t) ; t=1/3.(x+y+z)
=> x=y=z=t
=> M = 1+1+1+1 = 4
Tk mk nha
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{x+t+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{x+t+y}=\frac{x+y+z+t}{x+y+z}\)
+) Xét x + y + z + t= 0 => x + y = -(z+t) ; y + z = -(x+t); z+t = -(x+y); t+x = -(y+z)
\(\Rightarrow M=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(x+t\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
+) Xét x+y+z+t khác 0 => x=y=z=t
\(\Rightarrow M=1+1+1+1=4\)
Nếu \(x+y+z+t=0\)suy ra \(P=-1-1-1-1=-4\).
Nếu \(x+y+z+t\ne0\):
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Leftrightarrow x=y=z=t\ne0\).
Khi đó \(P=1+1+1+1=4\).
cộng 1 vào ĐK thì tử là x+y+z+t => mẫu = nhau
=> x=y=z=t => P=4
\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(\Rightarrow A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Ta có: x+y+z=0
Suy ra: x+y=-z; y+z=-x; z+x=-y
ta có: \(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
\(=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}\)
\(=-1\)
Ta có: x + y + z = 0
=> x + y = -z
x + z = -y
y + z = -x
Khi đó, ta có: C = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
C = \(\left(\frac{y+x}{y}\right)\left(\frac{z+y}{z}\right)\left(\frac{x+z}{x}\right)\)
C = \(\frac{-z}{y}.\frac{-x}{z}\frac{-y}{x}\)
C= -1
Bạn so sánh giúp minh \(\frac{2016^{2017}+1}{2016^{2016}+1}\) và \(\frac{2^{2016}+1}{2^{2015}+1}\)
ta có \(x^2-2y^2-xy=0\)
<=> \(\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)
<=> \(\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
<=> \(\left(x+y\right)\left(x-2y\right)=0\)
<=> x-2y=0( vì x+y khác 0)
<=> x=2y
thay vào đề bài ta có
\(Q=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Ta có : \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Mà \(x+y\text{≠}0\) nên \(x-2y=0\Rightarrow x=2y\)
\(\Rightarrow Q=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)