K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

a, Tính được DB=15cm.  A D B ^ ≈ 37 0 ;  A B D ^ ≈ 53 0

b, Tính được AO=7,2cm, DO=9,6cm và AC=20cm

c, Kẻ OK ⊥ DC tại K

DH=AB=9cm, DC=16cm, DK=5,76cm và OK=7,68cm

Từ đó  S D O H = O K . D H 2 = 7 , 68 . 9 2 = 34,56 c m 2

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

18 tháng 5 2018

\(\text{Xét: }\Delta BGA\perp G\text{ thì }BG^2+GA^2=AB^2\)

\(\Leftrightarrow\frac{4}{9}\left(BE^2+AD^2\right)=AB^2\)

\(\Leftrightarrow BE^2+\frac{1}{4}BC^2=\frac{27}{2}\)(1)

\(\text{Có trong: }\Delta ABE\text{ thì }AB^2+AE^2\)

\(\Leftrightarrow6+\frac{1}{4}AC^2=BE^2\)(2)

Từ (1) và (2), ta có: 

\(BC^2+AC^2=30\left(cm\right)\)

Mà: \(BC^2-AC^2=AB^2=6\left(cm\right)\)

Nên \(BC^2=18\)

\(\Rightarrow BC=3\sqrt{2}\left(cm\right)\)

18 tháng 5 2018

Áp dụng Pitago cho tg ABG

Áp dụng Pitago cho tg BDG

Tiếp tục làm tiếp nha bạn :")

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.Bài 4: a)Tính số đo của các góc trong...
Đọc tiếp

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.

Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.

Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.

Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.

b)Tứ giác ABCD là hình gì?Vì sao?

Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.

a)Cm: Tam giác ADB= tam giác AEC.

b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.

Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.

a) Tính số đo các góc BAD và BAC.

b)Cm tứ giác ABCD là hình thang cân.

Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^

2
12 tháng 6 2021

Bài 1:

a.

AB // CD

=> A + D = 1800 (2 góc trong cùng phía)

=> A = 1800 - D = 1800 - 540 = 1260

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 - C = 1800 - 1050 = 750

b.

AB // CD 

=> A + D = 1800 (2 góc trong cùng phía)

=> A = (1800 - 320) : 2 = 740

=> D = 1800 - 740 = 1060

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 : (1 + 2) . 2 = 1200

=> C = 1800 - 1200 = 600

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

25 tháng 2 2016

nhiều bài thế

8 tháng 1 2018

Thế này chắc sáng mai chẳng xong mấtbatngo

DD
21 tháng 6 2021

Xét tam giác \(BGA\)vuông tại \(G\)

\(BA^2=BG^2+GA^2=\frac{4}{9}\left(BE^2+AM^2\right)\Leftrightarrow BE^2+\frac{BC^2}{4}=\frac{27}{2}\)(1)

Xét tam giác \(ABE\)vuông tại \(A\)

\(BE^2=AB^2+AE^2=6+\frac{1}{4}AC^2\)(2)

Từ (1) và (2) suy ra \(BC^2+AC^2=30\)

mà \(BC^2=AC^2+6\)

suy ra \(BC^2=18\Rightarrow BC=3\sqrt{2}\left(cm\right)\).