K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

Co quy luat nay ne em: 1+2=3=2.3:2; 1+2+3=6=3.4:2;...;1+2+3+...+2012=2012.2013:2

Suy ra ta co:

Mau so cua D=1 + 1/(2.3:2)  +  1/(3.4:2)   +   1/(4.5:2)   +   ....   +   1/(2012.2013:2)

                    =1  +  2/2.3  +  2/3.4   +   2/4.5   +  ....  +   2/2012.2013

                    = 2.[1/2  +  1/2.3  +  1/3.4  +  1/4.5  +  .... +  1/2012.2013]

                    =2.[1/1.2   +  1/2.3   +   1/3.4   +  1/4.5   +  .....   +  1/2012.2013]

                    =2.[1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +....+1/2012 - 1/2013

                    =2[1 - 1/2013]

                    =2.2012/2013

Vay D= 2.2012 / (2.2012:2013)=2013

16 tháng 2 2020

\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2012}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2011}{2012}\)

\(=\frac{1}{2012}\)

Vậy \(B=\frac{1}{2012}\).

17 tháng 2 2020

Thanks bạn nha

20 tháng 9 2020

Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2012}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2011}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)

\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)

\(\Rightarrow A=B\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2013}=1\)

Vậy \(\left(\frac{A}{B}\right)^{2013}=1\).

27 tháng 1 2016

Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh

27 tháng 1 2016

\(7832\)

24 tháng 9 2016

Mẫu số của A \(=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)

\(=\left(1+1+...+1\right)+\left(\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\right)\)

      (2012 số 1)                 (2011 phân số)

\(=\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)

\(=\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)

\(=2013.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)

=> \(A=\frac{1}{2013}\)

24 tháng 9 2016

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)

\(\Rightarrow A=\frac{1}{2013}\)

Vậy \(A=\frac{1}{2013}\)

23 tháng 4 2019

A=1-(1-1/2)+1/3-(1/2-1/4)+..-(1/1006-1/2012)

A=1-1+1/2+1/3-1/2+1/4+...-1/1006+1/2012

A=(1-1)+(1/2-1/2)+...+(1/1006-1/1006)+1/1007+1/1008+..+1/2012

A=B => (A/B)^2013=1

Học tốt