K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2024

Xét 2024 số:

\(a_1=2024\)

\(a_2=20242024\)

\(a_3=202420242024\)

...

\(a_{2024}=20242024...2024\) (2024 lần cụm "2024")

 Một số khi chia cho 2023 thì có 2023 số dư phân biệt là 0, 1, 2,..., 2023 

 \(\Rightarrow\) Theo nguyên lí Dirichlet tồn tại 2 số \(a_i,a_j\left(i\ne j,1\le i< j\le2024\right)\) trong số 2024 số kể trên có cùng số dư khi chia cho 2023. 

 \(\Rightarrow a_j-a_i⋮2023\)

 \(\Rightarrow20242024...2024-20242024...2024⋮2023\)

       (\(j\) cụm "2024)          (\(i\) cụm "2024)

 \(\Rightarrow20242024...2024000...00⋮2023\) 

   (\(j-i\) cụm "2024" và \(i\) chữ số 0)

 \(\Rightarrow20242024...2024.10^i⋮2023\) (*)

 Nhưng vì \(10^i=2^i.5^i\) và \(2023=7.17^2\) nên \(ƯCLN\left(10^i,2023\right)=1\)

 Từ đó (*) suy ra \(20242024...2024⋮2023\)

                          (\(j-i\) cụm 2024)

 Ta có đpcm.

2 tháng 12 2023

bạn dùng chatgpt ạ?

tại vì cách giải của định lý dirichlet không như thế này.

2 tháng 12 2023

Ko phải tôi ko cần chatgpt nhưng ứng dụng này làm sai mà t xóa app chatgpt như thế

AH
Akai Haruma
Giáo viên
8 tháng 3 2023

Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$

Thực chất là với  mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$

16 tháng 3 2023

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;

17 tháng 3 2023

Để chứng minh rằng tồn tại một số có dạng 20232023...2023 chia hết cho 19, ta sẽ chứng minh rằng tồn tại một số nguyên n sao cho số nguyên s có dạng sau chia hết cho 19:

s = 20232023...2023 (n chữ số 2023)

Ta có thể biểu diễn s dưới dạng:

s = 2023 x 10⁰ + 2023 x 10¹ + 2023 x 10² + ... + 2023 x 10^(n-1)

= 2023 x (10⁰ + 10¹ + 10² + ... + 10^(n-1))

Để dễ dàng chứng minh, ta sẽ tính tổng sau đây:

10⁰ + 10¹ + 10² + ... + 10^(n-1) = (10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1) + n

= 111...1 (n số 1) + n

= (n + 1) x 111...1 (n số 1)

Do đó:

s = 2023 x (n + 1) x 111...1 (n số 1)

Ta có thể dễ dàng thấy rằng 19 chia hết cho 2023, do đó ta chỉ cần chứng minh rằng (n + 1) x 111...1 (n số 1) chia hết cho 19.

Ta có:

111...1 (n số 1) = (10⁰ + 10¹ + 10² + ... + 10^(n-1)) / 9

= [(10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1)] / 9

= [(n + 1) x 111...1 (n số 1)] / 9

Do đó:

s = 2023 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / 9

= 19 x 1064819 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / (19 x 9)

Như vậy, ta chỉ cần chọn một số nguyên n sao cho (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì 19 là số nguyên tố và không chia hết cho 3, nên ta có thể chọn n = 18, để (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì vậy, tồn tại một số có dạng 20232023...2023 (18 chữ số 2023) chia hết cho 19.

17 tháng 3 2023

cảm ơn bạn nghen

bài làm

Ta có:

\(\frac{2024}{2023^{2} + k} = \frac{2023^{2} + 2023}{2023^{2} + k} = 1 + \frac{2023 - k}{2023^{2} + k}\)

Vậy

\(A = \sum_{k = 1}^{2023} \left(\right. 1 + \frac{2023 - k}{2023^{2} + k} \left.\right) = 2023 + \sum_{k = 1}^{2023} \frac{2023 - k}{2023^{2} + k}\)

\(\frac{2023 - k}{2023^{2} + k} > 0\) khi \(k < 2023\), và bằng 0 khi \(k = 2023\), nên

\(2023 < A < 2024\)

Suy ra A ko phải là số tự nhiên

16 tháng 8 2016

có thằng đồng hoàn cảnh rùi

28 tháng 11 2016

chịu@@@@@@@@@@@@@@@@@@@

28 tháng 11 2016

số đó là : 1111111111111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ..................................................................... nói tóm lại bội số 0

kik mik nha