cho phân số B=2n-3 phần n-2 (n thuộc Z. n ko= 2). Tìm n để B có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99
3A - A = 1 - 1/3^100 = 2A
A = (1 - 1/3^100)/2
B2:
a)
để A nguyên <=> n + 3 ⋮ n - 5
=> n - 5 + 8 ⋮ n - 5
=> 8 ⋮ n - 5
=> ...
b)
để B nguyên <=> 1 - 2n ⋮ n + 3
=> 4 - 2n - 3 ⋮ n + 3
=> 4 - 2(n + 3) ⋮ n + 3
=> 4 ⋮ n + 3
=> ...
a) \(A=\frac{n-4}{n+3}\left(n\in Z\right)\)
\(A=\frac{\left(n+3\right)-7}{n+3}\)
\(\Rightarrow\left(n+3\right)\inƯ_{\left(7\right)}=\left\{-7;-1;1;7\right\}\)
Lập bảng tìm n:
n+3 | -7 | -1 | 1 | 7 |
n | -10 | -4 | -2 | 4 |
Thỏa mãn | TM | TM | TM | TM |
Vậy \(n\in\left\{-10;-4;-2;4\right\}\)để \(A\in Z\)
b) \(B=\frac{3n-7}{2n+3}\left(n\in Z\right)\)
\(B=\frac{\left(3n+3\right)-10}{2n+3}\)
\(\Rightarrow2n+3\inƯ_{10}=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
Lập bảng tìm n:
2n+3 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
n | -6,5 | -4 | -2,5 | -2 | -1 | -0,5 | 4 | 6,5 |
Thỏa mãn | loại | TM | loại | TM | TM | loại | TM | loại |
Vậy \(n\in\left\{-4;-2;-1;4\right\}\)để \(A\in Z\)
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
\(B=\dfrac{2n-3}{n-2}=\dfrac{2n-4+1}{n-2}=\dfrac{2\left(n-2\right)}{n-2}+\dfrac{1}{n-2}=2+\dfrac{1}{n-2}\)
Do \(2\in Z\Rightarrow B\in Z\) khi \(\dfrac{1}{n-2}\in Z\)
\(\Rightarrow n-2=Ư\left(1\right)\)
\(\Rightarrow n-2=\left\{-1;1\right\}\)
\(\Rightarrow n=\left\{1;3\right\}\)