cho tam giác ABC nhọn , AB<AC nội tiếp đường tròn tâm O ( nên vẽ BC gần tâm ) . Lấy điểm M thuộc cung nhỏ BC vẽ MH vuông góc với BC ở H MK vuông góc với AB ở K giả sử K nằm ngoài AB 1 Chứng minh gócMHK = góc MBK =MCA . 2, góc MHI bù với góc MCA và ba điểm K,H,I thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
Điểm I ở câu 2 là điểm nào em?
1, Ta có \(\widehat{MHB}=\widehat{MKB}=90^o\) nên tứ giác BHMK nội tiếp đường tròn (BM) nên \(\widehat{MHK}=\widehat{MBK}\)
Lại có tứ giác ABCM nội tiếp nên \(\widehat{MBK}=\widehat{ACM}\) (góc ngoài bằng góc trong đối)
\(\Rightarrow\widehat{MHK}=\widehat{MBK}=\widehat{ACM}\)
2, Ta có \(\widehat{MHC}=\widehat{MIC}=90^o\) nên tứ giác MHIC nội tiếp đường tròn (MC).
\(\Rightarrow\widehat{MHI}+\widehat{MCA}=180^o\)
Lại có \(\widehat{MCA}=\widehat{MHK}\left(cmt\right)\Rightarrow\) \(\widehat{MHI}+\widehat{MHK}=180^o\) \(\Rightarrow\) H, K, I thẳng hàng.
Thêm: Đường thẳng qua 3 điểm H, I, K gọi là đường thẳng Simson trong tam giác. Bạn có thể lên mạng tham khảo thêm.