1 . Tìm số nguyên n biết
2n + 3 chia hết cho 3n + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2n+3\vdots 3n+2$
$\Rightarrow 3(2n+3)\vdots 3n+2$
$\Rightarrow 6n+9\vdots 3n+2$
$\Rightarrow 2(3n+2)+5\vdots 3n+2$
$\Rightarrow 5\vdots 3n+2$
$\Rightarrow 3n+2\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{\frac{-1}{3}; -1; 1; \frac{-7}{3}\right\}$
Do $n$ nguyên nên $n\in \left\{-1;1\right\}$
Thử lại thấy thỏa mãn.
Ta có 3n+ 2 chia hết cho 2n + 1 khi và chỉ khi 2.(3n+2) = 6n + 4 = 3.(2n+ 1) + 1 chia hết cho 2 n+1
<=> 1 chia hết cho 2n+1
Sau đó bạn tìm n
3n + 2 chia hết cho 2n + 1
=> 2 (3n + 2) chia hết cho 2n + 1
3 (2n + 1) chia hết cho 2n + 1
=> 6n + 4 chia hết cho 2n + 1
6n + 3 chia hết cho 2n + 1
=> 6n + 4 - (6n + 3) chia hết cho 2n + 1
6n + 4 - 6n - 3 chia hết cho 2n + 1
1 chia hết cho 2n + 1
=> 2n + 1 thuộc Ư (1) = {1 ; -1}
Vậy n thuộc {0 ; -1}
Ta có:
\(2n+3⋮3n+2\)
\(\Rightarrow\) \(6n+9⋮6n+4\)
\(\Rightarrow\) \(6n+9-6n-4⋮6n+4\)
\(\Rightarrow\) \(5⋮6n+4\)
\(\Rightarrow\) \(6n+4\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow\) \(6n\in\left\{1\right\}\)
\(\Rightarrow\) \(n=\frac{1}{6}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)