Cho hai đường tròn (O) và (O') cắt nhau tại A và B tiếp tuyến tại A của hai đường tròn gặp (O) và (O') tại M và N lấy E đối xứng với A qua B. Chúng minh A,M,E,N cùng thuộc một đường tròn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên:
O ’ P 2 = O ’ A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π . r 2 = 2 π ( c m 2 ) .
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên: O ' P 2 = O ' A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π · r 2 = 2 π cm 2
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (o),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
Hướng dẫn làm bài:
Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB
Xét hai tam giác vuông OPB và O’AP, ta có:
ˆA=ˆB=900A^=B^=900
ˆP1P1^ chung
Vậy ΔOBP ~ ∆ O’AP
⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r
Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)
Áp dụng định lí Py-ta-go trong tam giác vuông O’AP
O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2
Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)
Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB
Xét hai tam giác vuông OPB và O’AP, ta có:
ˆA=ˆB=900A^=B^=900
ˆP1P1^ chung
Vậy ΔOBP ~ ∆ O’AP
⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r
Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)
Áp dụng định lí Py-ta-go trong tam giác vuông O’AP
O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2
Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
=>AH*AO=AB^2
Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB^2=AE*AD=AH*AO
a: góc BMA=góc CNA=90 độ
=>MB//NC
=>IK//MB//NC
=>IK vuông góc MN
góc AIK+góc AHK=90+90=180 độ
=>AHIK nội tiếp
b: ΔHMN đồng dạng với ΔABC
=>góc MHN=góc BAC cố định
\(S_{HMN}=\dfrac{1}{2}\cdot HM\cdot HN\cdot sin\widehat{MHN}< =\dfrac{1}{2}\cdot AB\cdot AC\cdot sin\widehat{BAC}\)
Dấu = xảy ra khi MH là đừog kính của (O) và NH là đường kính của (O')
Kiến thức áp dụng
Trong một đường tròn:
+ Số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.
+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.
Gọi X và Y lần lượt là giao điểm thứ hai của EM với (O), EN với (O').
Ta có \(\widehat{MAO'}=\widehat{NAO}\left(=90^o\right)\) nên \(\widehat{MAO}=\widehat{NAO'}\). Hơn nữa tam giác MAO và NAO' đều là các tam giác cân nên \(\Rightarrow\widehat{MOA}=\widehat{NO'A}\)
Trong đường tròn (O), ta có: \(\widehat{MOA}=sđ\stackrel\frown{MA}=2.\dfrac{1}{2}sđ\stackrel\frown{MA}=2\widehat{MBA}\)
Tương tự, ta có \(\widehat{NO'A}=2\widehat{ABN}\)
\(\Rightarrow\widehat{MBA}=\widehat{ABN}\)
Hơn nữa có \(\widehat{MAB}=\widehat{ANB}\) (vì chúng lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung nhỏ AB của (O').
\(\Rightarrow\Delta BAM\sim\Delta BNA\left(g.g\right)\)
\(\Rightarrow\dfrac{BA}{BN}=\dfrac{BM}{BA}\)
Do \(BA=BE\) nên \(\dfrac{BE}{BN}=\dfrac{BM}{BE}\)
Lại có \(\widehat{MBA}=\widehat{ABN}\left(cmt\right)\) \(\Rightarrow\widehat{EBM}=\widehat{EBN}\)
\(\Rightarrow\Delta MBE\sim\Delta EBN\left(c.g.c\right)\)
\(\Rightarrow\widehat{MEB}=\widehat{ENB}\)
Lại có \(\widehat{ENB}=\widehat{BNY}=\widehat{BAY}\) nên \(\widehat{MEB}=\widehat{BAY}\) \(\Rightarrow\) EX//AY
\(\Rightarrow\widehat{AYN}=\widehat{MEN}\)
Hơn nữa vì \(\widehat{NAx}=\widehat{AYN}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung nhỏ AN trong (O'))
\(\Rightarrow\widehat{NAx}=\widehat{MEN}\)
Từ đó suy ra tứ giác AMEN nội tiếp (góc ngoài bằng góc trong đối)
Ta có đpcm.