K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-m\right)\)

\(=4m^2-4m^2+4m=4m\)

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}\text{Δ}>0\\-\dfrac{b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m>0\\2m>0\\m^2-m>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>0\\m\left(m-1\right)>0\end{matrix}\right.\Leftrightarrow m>1\)

\(\sqrt{x_1}=\sqrt{3x_2}\)

=>\(\left\{{}\begin{matrix}x_1>=0\\x_2>=0\\x_1=3x_2\end{matrix}\right.\)

\(x_1+x_2=-\dfrac{b}{a}=2m\)

=>\(3x_2+x_2=2m\)

=>\(x_2=0,5m\)

=>\(x_1=1,5\cdot m\)

\(x_1\cdot x_2=\dfrac{c}{a}=m^2-m\)

=>\(m^2-m-0,75m^2=0\)

=>\(0,25m^2-m=0\)

=>\(m\left(0,25m-1\right)=0\)

=>\(\left[{}\begin{matrix}m=0\left(loại\right)\\m=4\left(nhận\right)\end{matrix}\right.\)

NV
21 tháng 2

\(\Delta'=m^2-\left(m^2-m\right)=m>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m>0\\x_1x_2=m^2-m\ge0\end{matrix}\right.\) 

\(\Rightarrow m\ge1\)

Khi đó:

\(\sqrt{x_1}=\sqrt{3x_2}\Rightarrow x_1=3x_2\)

Thế vào \(x_1+x_2=2m\Rightarrow4x_2=2m\Rightarrow x_2=\dfrac{m}{2}\)

\(\Rightarrow x_1=\dfrac{3m}{2}\)

Thế vào \(x_1x_2=m^2-m\)

\(\Rightarrow\dfrac{3m^2}{4}=m^2-m\)

\(\Rightarrow m^2-4m=0\Rightarrow\left[{}\begin{matrix}m=0\left(loại\right)\\m=4\end{matrix}\right.\)

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

9 tháng 6 2021

Để pt có hai nghiệm pb <=>\(\Delta>0\)<=> \(4m^2-16m+16>0\) <=>\(4\left(m-2\right)^2>0\left(lđ\right)\)

=> Pt luôn có hai nghiệm pb

Do \(x_1\) là một nghiệm của pt => \(x_1^2-2mx_1+4m-4=0\) <=> \(x_1^2=2mx_1-4m+4\)

Có \(x_1^2+2mx_2-8m+5=0\)

\(\Leftrightarrow2mx_1+2mx_2-4m+4-8m+5=0\)

\(\Leftrightarrow2m\left(x_1+x_2\right)-12m+9=0\)

\(\Leftrightarrow2m.2m-12m+9=0\)

\(\Leftrightarrow\left(2m-3\right)^2=0\)

\(\Leftrightarrow m=\dfrac{3}{2}\)

Vậy...

9 tháng 6 2021

\(\Delta'=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Rightarrow m\ne2\)

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)

Ta có: \(x_1^2+2mx_2-8m+5=0\Rightarrow x_1^2+\left(x_1+x_2\right)x_2-8m+5=0\)

\(\Rightarrow x_1^2+x_2^2+x_1x_2-8m+5=0\Rightarrow\left(x_1+x_2\right)^2-x_1x_2-8m+5=0\)

\(\Rightarrow4m^2-4m+4-8m+5=0\Rightarrow4m^2-12m+9=0\)

\(\Rightarrow\left(2m-3\right)^2=0\Rightarrow m=\dfrac{3}{2}\)

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

AH
Akai Haruma
Giáo viên
2 tháng 7 2023

Lời giải:

Để pt có 2 nghiệm phân biệt thì:

$\Delta'=m^2-(2m-4)=m^2-2m+4>0$

$\Leftrightarrow (m-1)^2+3>0$

$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:

$x_1+x_2=2m$

$x_1x_2=2m-4$

Khi đó:
$x_1+2x_2=8$

$\Leftrightarrow 2m+x_2=8$

$\Leftrightarrow x_2=8-2m$

$\Leftrightarrow x_1=2m-x_2=2m-(8-2m)=4m-8$

$2m-4=x_1x_2=(4m-8)(8-2m)$

$\Leftrightarrow m-2=(2m-4)(8-2m)=2(m-2)(8-2m)$

$\Leftrightarrow (m-2)[2(8-2m)-1]=0$

$\Leftrightarrow (m-2)(15-4m)=0$

$\Leftrightarrow m=2$ hoặc $m=\frac{15}{4}$

\(\text{Δ}=\left(-8\right)^2-4\cdot\left(-3\right)\cdot\left(m-1\right)\)

\(=64+12\left(m-1\right)\)

=64+12m-12

=12m+52

a: Để phương trình có hai nghiệm phân biệt nhỏ hơn 7 thì 

\(\left\{{}\begin{matrix}12m+52>0\\8< 14\end{matrix}\right.\Leftrightarrow m>-\dfrac{13}{4}\)

b: Để phương trình có hai nghiệm phân biệt lớn hơn 7 thì \(\left\{{}\begin{matrix}12m+52>0\\8>14\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Trường hợp 1: m=10

Phương trình sẽ là -40x+6=0

hay x=3/20

=>m=10 sẽ thỏa mãn trường hợp a

Trường hợp 2: m<>10

\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)

\(=16m^2-4\left(m^2-14m+40\right)\)

\(=16m^2-4m^2+56m-160\)

\(=12m^2+56m-160\)

\(=4\left(3m^2+14m-40\right)\)

\(=4\left(3m^2-6m+20m-40\right)\)

\(=4\left(m-2\right)\left(3m+20\right)\)

a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0

=>m>=2 hoặc m<=-20/3

b: Để phương trình có hai nghiệm phân biệt đều dương thì 

\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)

11 tháng 3 2021

Để pt có 2 nghiệm phân biệt thì \(\Delta'=m^2-\left(m+2\right)>0\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\). (1)

Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\).

Ta có \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(2m\right)^3-3.2m.\left(m+2\right)=8m^3-6m^2-12m\).

Do đó \(8m^3-6m^2-12m\le16\Leftrightarrow\left(m-2\right)\left(8m^2+10m+8\right)\le0\Leftrightarrow m\le2\)

(do \(8m^2+10m+8=2\left(2m+\dfrac{5}{4}\right)^2+\dfrac{39}{8}>0\forall m\)).

Kết hợp vs (1) ta có m < -1.

a: \(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot5\left(m-1\right)\)

\(=16-40\left(m-1\right)\)

\(=16-40m+40\)

=-40m+56

Để phương trình có hai nghiệm phân biệt nhỏ hơn 3 thì

\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}< 6\end{matrix}\right.\Leftrightarrow-40m>-56\)

hay m<7/5

b: Để phương trình có hai nghiệm phân biệt lớn hơn 3 thì

\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}>6\end{matrix}\right.\Leftrightarrow m\in\varnothing\)