Cho phương trình: \(x^2-2mx+m^2-m=0\). Tìm m để phương trình có hai nghiệm phân biệt \(x_1;x_2\) thỏa mãn \(\sqrt{x_1}=\sqrt{3x_2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
Để pt có hai nghiệm pb <=>\(\Delta>0\)<=> \(4m^2-16m+16>0\) <=>\(4\left(m-2\right)^2>0\left(lđ\right)\)
=> Pt luôn có hai nghiệm pb
Do \(x_1\) là một nghiệm của pt => \(x_1^2-2mx_1+4m-4=0\) <=> \(x_1^2=2mx_1-4m+4\)
Có \(x_1^2+2mx_2-8m+5=0\)
\(\Leftrightarrow2mx_1+2mx_2-4m+4-8m+5=0\)
\(\Leftrightarrow2m\left(x_1+x_2\right)-12m+9=0\)
\(\Leftrightarrow2m.2m-12m+9=0\)
\(\Leftrightarrow\left(2m-3\right)^2=0\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
Vậy...
\(\Delta'=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Rightarrow m\ne2\)
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)
Ta có: \(x_1^2+2mx_2-8m+5=0\Rightarrow x_1^2+\left(x_1+x_2\right)x_2-8m+5=0\)
\(\Rightarrow x_1^2+x_2^2+x_1x_2-8m+5=0\Rightarrow\left(x_1+x_2\right)^2-x_1x_2-8m+5=0\)
\(\Rightarrow4m^2-4m+4-8m+5=0\Rightarrow4m^2-12m+9=0\)
\(\Rightarrow\left(2m-3\right)^2=0\Rightarrow m=\dfrac{3}{2}\)
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
Lời giải:
Để pt có 2 nghiệm phân biệt thì:
$\Delta'=m^2-(2m-4)=m^2-2m+4>0$
$\Leftrightarrow (m-1)^2+3>0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2m$
$x_1x_2=2m-4$
Khi đó:
$x_1+2x_2=8$
$\Leftrightarrow 2m+x_2=8$
$\Leftrightarrow x_2=8-2m$
$\Leftrightarrow x_1=2m-x_2=2m-(8-2m)=4m-8$
$2m-4=x_1x_2=(4m-8)(8-2m)$
$\Leftrightarrow m-2=(2m-4)(8-2m)=2(m-2)(8-2m)$
$\Leftrightarrow (m-2)[2(8-2m)-1]=0$
$\Leftrightarrow (m-2)(15-4m)=0$
$\Leftrightarrow m=2$ hoặc $m=\frac{15}{4}$
\(\text{Δ}=\left(-8\right)^2-4\cdot\left(-3\right)\cdot\left(m-1\right)\)
\(=64+12\left(m-1\right)\)
=64+12m-12
=12m+52
a: Để phương trình có hai nghiệm phân biệt nhỏ hơn 7 thì
\(\left\{{}\begin{matrix}12m+52>0\\8< 14\end{matrix}\right.\Leftrightarrow m>-\dfrac{13}{4}\)
b: Để phương trình có hai nghiệm phân biệt lớn hơn 7 thì \(\left\{{}\begin{matrix}12m+52>0\\8>14\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Trường hợp 1: m=10
Phương trình sẽ là -40x+6=0
hay x=3/20
=>m=10 sẽ thỏa mãn trường hợp a
Trường hợp 2: m<>10
\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)
\(=16m^2-4\left(m^2-14m+40\right)\)
\(=16m^2-4m^2+56m-160\)
\(=12m^2+56m-160\)
\(=4\left(3m^2+14m-40\right)\)
\(=4\left(3m^2-6m+20m-40\right)\)
\(=4\left(m-2\right)\left(3m+20\right)\)
a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0
=>m>=2 hoặc m<=-20/3
b: Để phương trình có hai nghiệm phân biệt đều dương thì
\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)
\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'=m^2-\left(m+2\right)>0\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\). (1)
Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\).
Ta có \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(2m\right)^3-3.2m.\left(m+2\right)=8m^3-6m^2-12m\).
Do đó \(8m^3-6m^2-12m\le16\Leftrightarrow\left(m-2\right)\left(8m^2+10m+8\right)\le0\Leftrightarrow m\le2\)
(do \(8m^2+10m+8=2\left(2m+\dfrac{5}{4}\right)^2+\dfrac{39}{8}>0\forall m\)).
Kết hợp vs (1) ta có m < -1.
a: \(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot5\left(m-1\right)\)
\(=16-40\left(m-1\right)\)
\(=16-40m+40\)
=-40m+56
Để phương trình có hai nghiệm phân biệt nhỏ hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}< 6\end{matrix}\right.\Leftrightarrow-40m>-56\)
hay m<7/5
b: Để phương trình có hai nghiệm phân biệt lớn hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}>6\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-m\right)\)
\(=4m^2-4m^2+4m=4m\)
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}\text{Δ}>0\\-\dfrac{b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m>0\\2m>0\\m^2-m>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>0\\m\left(m-1\right)>0\end{matrix}\right.\Leftrightarrow m>1\)
\(\sqrt{x_1}=\sqrt{3x_2}\)
=>\(\left\{{}\begin{matrix}x_1>=0\\x_2>=0\\x_1=3x_2\end{matrix}\right.\)
\(x_1+x_2=-\dfrac{b}{a}=2m\)
=>\(3x_2+x_2=2m\)
=>\(x_2=0,5m\)
=>\(x_1=1,5\cdot m\)
\(x_1\cdot x_2=\dfrac{c}{a}=m^2-m\)
=>\(m^2-m-0,75m^2=0\)
=>\(0,25m^2-m=0\)
=>\(m\left(0,25m-1\right)=0\)
=>\(\left[{}\begin{matrix}m=0\left(loại\right)\\m=4\left(nhận\right)\end{matrix}\right.\)
\(\Delta'=m^2-\left(m^2-m\right)=m>0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m\end{matrix}\right.\)
Để biểu thức đề bài xác định \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m>0\\x_1x_2=m^2-m\ge0\end{matrix}\right.\)
\(\Rightarrow m\ge1\)
Khi đó:
\(\sqrt{x_1}=\sqrt{3x_2}\Rightarrow x_1=3x_2\)
Thế vào \(x_1+x_2=2m\Rightarrow4x_2=2m\Rightarrow x_2=\dfrac{m}{2}\)
\(\Rightarrow x_1=\dfrac{3m}{2}\)
Thế vào \(x_1x_2=m^2-m\)
\(\Rightarrow\dfrac{3m^2}{4}=m^2-m\)
\(\Rightarrow m^2-4m=0\Rightarrow\left[{}\begin{matrix}m=0\left(loại\right)\\m=4\end{matrix}\right.\)