Tìm cặp số nguyên (x,y) thỏa mãn x+2y=3xy+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nè
https://olm.vn/hoi-dap/detail/222735820244.html
Học tốt
\(x+2y=3xy+3\)
\(x-3xy+2y-3=0\)
\(y\left(2-3x\right)+x-3=0\)
\(-3y\left(2-3x\right)-3x+9=0\)
\(-3y\left(2-3x\right)+2-3x=-7\)
\(\left(2-3x\right)\left(1-3y\right)=-7\)
đến đây dễ rồi bn giải tiếp nha
Viết lại các câu sau cho nghĩa không đổi
1. My room is smaller than your room.
Your room is bigger than my room.
2. No house on the street is older than this house.
This house isthe oldest on the street.
3. Quang is 1.75 meters tall. Vinh is 1.65 tall.
Vinh is shorter than Quang
4. Hang is the fattest girl in my class.
No girl in my class is fatter than Hang
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
\(3x^2+3xy-17=7x-2y\)
\(\Leftrightarrow3x\left(x+y\right)+2x+2y-9x-17=0\)
\(\Leftrightarrow3x\left(x+y\right)+2\left(x+y\right)-9x-6-11=0\)
\(\Leftrightarrow\left(x+y\right)\left(3x+2\right)-3\left(3x+2\right)=11\)
\(\Leftrightarrow\left(3x+2\right)\left(x+y-3\right)=11\)
\(\Leftrightarrow\left(3x+2\right);\left(x+y-3\right)\in\left\{-1;1;-11;11\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(-\dfrac{1}{3};\dfrac{43}{3}\right);\left(-\dfrac{11}{3};\dfrac{17}{3}\right);\left(3;1\right)\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(3;1\right)\right\}\left(x;y\inℤ\right)\)
x² + 5y² + 2y - 4xy - 3 = 0
<=> x² - 4xy + 4y² + y² + 2y + 1 - 4 = 0
<=> (x - 2y)² + (y + 1)² = 4 (*)
VÌ (x -2y)², (y+1)² là các số chính phương nên (*) chỉ có các khã năng:
* KN1:
{(x-2y)² = 0
{(y+1)² = 4
<=> x = 2y và y+1 = ±2 => x = 2y và y = -3 (do ta chọn y nhỏ nhất nên loại y = 1)
=> x = -6 và y = -3
* KN2:
{(x-2y)² = 4
{y+1)² = 0
<=> x - 2y = ±2 và y = -1 > -3 tức là ta chọn nghiêm y = -3 mới nhỏ nhất
Vậy cặp (x, y) cần tìm là: x = -6; y = -3
\(x^2+2y^2-3xy+2x-4y+3=0\)
\(\Leftrightarrow\left(x^2-3xy+\frac{9}{4}y^2\right)+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{4}y^2+y+1\right)+3=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}y\right)^2+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{2}y+1\right)^2+3=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}y+1\right)^2-\left(\frac{1}{2}y+1\right)^2=-3\)
\(\Leftrightarrow\left(x-\frac{3}{2}y+1-\frac{1}{2}y-1\right)\left(x-\frac{3}{2}y+1+\frac{1}{2}y+1\right)=-3\)
\(\Leftrightarrow\left(x-2y\right)\left(x-y+2\right)=-3\)
Đến đây tự làm ( Dễ )
Ta có:
\(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)
\(3-y^2-2y=4-\left(y^2+2y+1\right)=4-\left(y+1\right)^2\le4\)
\(\Rightarrow\left|x+3\right|+\left|x-1\right|\ge3-y^2-2y\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x+3\right)\left(1-x\right)\ge0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le1\\y=-2\end{matrix}\right.\)
Các cặp số nguyên thỏa mãn là:
\(\left(x;y\right)=\left(-3;-2\right);\left(-2;-2\right);\left(-1;-2\right);\left(0;-2\right);\left(1;-2\right)\)
Đây là dạng toán nâng cao chuyên đề tìm nghiệm nguyên. Hôm nauy Olm.vn sẽ hướng dẫn em giải dạng này bằng phương pháp tìm điều kiện để phân số là một số nguyên.
\(x\) + 2y = 3\(xy\) + 3
\(x\) - 3\(xy\) = 3 - 2y
\(x\).(1 - 3y) = 3 - 2y
\(x\) = \(\dfrac{3-2y}{1-3y}\)
\(x\) \(\in\) Z ⇔ 3 - 2y ⋮ 1 - 3y
3.(3 - 2y) ⋮ 1 - 3y
9 - 6y ⋮ 1 - 3y
7 + 2 - 6y ⋮ 1 - 3y
7 + 2.(1 - 3y) ⋮ 1 - 3y
7 ⋮ 1 - 3y
1 - 3y \(\in\) Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
Kết luận: Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (3; 0); (1; -2)