K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2022

Ta có:

p2−2q2=1⇒p2=2q2p2−2q2=1⇒p2=2q2mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)

Ta có: 

(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(vì q là số nguyên tố) tìm được p = 3

Vậy: (p;q)∈{3;2}

21 tháng 2 2022

chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương

3 tháng 1 2016

p.q + 1là số nguyên tố

Mà p.q + 1 > 3 => p .q + 1 lẻ => p.q chẵn

< = > p = 2 hoặc q = 2 

Bạn liệt kê ra 

8 tháng 2 2020

a. 32 = 25 => n thuộc tập 1; 2; 3; 4

b. \(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)

\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{11}{12}\)

\(\Rightarrow x=\frac{12}{11}\)

c. p nguyên tố => \(p\ge2\) => 52p luôn có dạng A25

=> 52p+2015 chẵn

=> 20142p + q3 chẵn

Mà 20142p chẵn => q3 chẵn => q chẵn => q = 2

=> 52p + 2015 = 20142p+8

=> 52p+2007 = 20142p

2014 có mũ dạng 2p => 20142p có dạng B6

=> 52p = B6 - 2007 = ...9 (vl)

(hihi câu này hơi sợ sai)

d. \(17A=\frac{17^{19}+17}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)\(17B=\frac{17^{18}+17}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)

\(17^{19}+1>17^{18}+1\Rightarrow\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)

\(\Rightarrow17A< 17B\)

\(\Rightarrow A< B\)

9 tháng 2 2020

de thi chon hoc sinh gioi nay

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13