Cho tam giác ABC vuông tại A. Lấy một điểm M bất kì trong tam giác. Từ M kẻ \(MI⊥BC\) , \(MJ⊥CA\) , \(MK⊥AB\) \(\left(I\in BC,J\in CA,K\in AB\right)\) . Xác định vị trí của điểm M để của tổng \(MI^2+MJ^2+MK^2\) đạt giá trị nhỏ nhất?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
4 tháng 9 2017
b1:
Bạn cũng có thể gộp chung thế này:
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >=
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 =
AH^2/2 + (M'H - M'A)^2/2
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH.
=> M trùng với M' và MA = M'A = M'H = MH
=> M nằm ở trung điểm AH
24 tháng 2 2023
a: IM vuông góc AC
AB vuông goc AC
=>IM//AB
=>góc BAM=góc IMA
b: XétΔCIM vuông tại I và ΔCIN vuông tại I có
CI chung
IM=IN
=>ΔCIM=ΔCIN
c: Xét tứ giác AKMI có
MI//AK
MI=AK
góc IAK=90 độ
=>AKMI là hình chữ nhật
=>MK//AC
d: AKMI là hình chữ nhật
=>AM=KI
Kẻ MP\(⊥\)AH
Ta có AKMJ, PMIH là hình chữ nhật
=> \(MI^2+MJ^2+MK^2=AM^2+PH^2\ge AP^2+PH^2\ge\frac{\left(AP+PH\right)^2}{2}=\frac{AH^2}{2}\)
Dấu = xảy ra khi M là trung điểm AH
ai mà biết