Cho hàm số y = f(x) = (1 - 2m)x + 2. Tìm m để hàm số đã cho là hàm số bậc nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Hàm số bậc nhất là hàm số có dạng: y = ax + b (a ≠ 0)
Để hàm số đã cho là hàm số bậc nhất thì:
2m - 4 ≠ 0 ⇒ 2m ≠ 4 ⇒ m ≠ 2
a) hàm số bậc nhất -2m-4\(\ne\)0<=>m\(\ne-2\)
b)hàm số nghịch biến\(-2m-4< 0\Leftrightarrow m>-2\)
\(a,f\left(x\right)=\left(-2m-4\right)x+1\) bậc nhất \(\Leftrightarrow-2m-4\ne0\Leftrightarrow m\ne-2\)
\(b,f\left(x\right)=\left(-2m-4\right)x+1\) nghịch biến \(\Leftrightarrow-2m-4< 0\Leftrightarrow-2m< 4\Leftrightarrow m>-2\)
Lời giải:
a. Để hs trên là hàm bậc nhất thì:
$4m2-4m+1\neq 0$
$\Leftrightarrow (2m-1)^2\neq 0$
$\Leftrightarrow 2m-1\neq 0$
$\Leftrightarrow m\neq \frac{1}{2}$
b.
$f(1)=(4m^2-4m+1).1-3=4m^2-4m-2=6$
$\Leftrightarrow 4m^2-4m-8=0$
$\Leftrightarrow m^2-m-2=0$
$\Leftrightarrow (m+1)(m-2)=0$
$\Leftrightarrow m=-1$ hoặc $m=2$
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
Bài 1
ĐKXĐ: m ≠ 0 và m ≠ -1/2
a) Để hai đường thẳng cắt nhau thì:
3m ≠ 2m + 1
⇔ m ≠ 1
Vậy m ≠ 0; m ≠ -1/2 và m ≠ 1 thì hai đường thẳng đã cho cắt nhau
b) Để hai đường thẳng song song thì:
3m = 2m + 1
⇔ m = 1 (nhận)
Vậy m = 1 thì hai đường thẳng đã cho song song
Bài 2
ĐKXĐ: m ≠ 0 và m ≠ -1/2
a) Để hai đường thẳng đã cho cắt nhau thì:
3m ≠ 2m + 1
⇔ m ≠ 1
Vậy m ≠ 0; m ≠ -1/2; m ≠ 1 thì hai đường thẳng đã cho cắt nhau
b) Để hai đường thẳng trùng nhau thì:
3m = 2m + 1 và 4 - m² = 3
*) 3m = 2m + 1
⇔ m = 1 (nhận) (*)
*) 4 - m² = 3
⇔ m² = 4 - 3
⇔ m² = 1
⇔ m = 1 (nhận) hoặc m = -1 (nhận) (**)
Từ (*) và (**) ⇒ m = 1 thì hai đường thẳng đã cho trùng nhau
c) Để hai đường thẳng đã cho song song thì:
3m = 2m + 1 và 4 - m² ≠ 3
*) 3m = 2m + 1
⇔ m = 1 (nhận) (1)
*) 4 - m² ≠ 3
⇔ m² ≠ 1
⇔ m ≠ 1 (nhận) và m ≠ -1 (nhận) (2)
Từ (1) và (2) ⇒ Không tìm được m để hai đường thẳng đã cho song song
d) Để hai đường thẳng vuông góc thì:
3m.(2m + 1) = -1
⇔ 6m² + 3m + 1 = 0 (3)
Ta có:
6m² + 3m + 1 = 6.(m² + m/2 + 1/6)
= 6.(m² + 2.m.1/4 + 1/16 + 5/48)
= 6(m + 1/4)² + 5/8 > 0 (với mọi m)
⇒ (3) là vô lý
Vậy không tìm được m để hai đường thẳng đã cho vuông góc
\(a,\) Hàm số đồng biến \(\Leftrightarrow a>0\Leftrightarrow\dfrac{m+1}{2m-3}>0\left(dk:m\ne\dfrac{3}{2}\right)\Leftrightarrow m+1>0\Leftrightarrow m>-1\)
\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m\ne\dfrac{3}{2}\end{matrix}\right.\)
\(b,\) Hàm số nghịch biến \(\Leftrightarrow a< 0\Leftrightarrow\dfrac{m+1}{2m-3}< 0\left(dk:m\ne\dfrac{3}{2}\right)\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)
1. Để 2 đồ thị hàm số đã cho là hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m+1=2m+1\\2m\ne3m\end{matrix}\right.\left(ĐK:m\ne-1,-\dfrac{1}{2}\right)\)
Hệ phương trình tương đương với:
\(\left\{{}\begin{matrix}m=0\\m\ne0\end{matrix}\right.\Rightarrow\text{Hệ\:phương\:trình\:vô\:nghiệm}\)
Vậy không tồn tại giả trị m để đồ thị của hai hàm số trên song song.
2. Để giao điểm hai đồ thì nằm trên trục hoành thì y = 0.
\(y=\left(m+1\right)x+2m=0\Rightarrow x=-\dfrac{2m}{m+1}\) (1)
\(y=\left(2m+1\right)x+3m=0\Rightarrow x=-\dfrac{3m}{2m+1}\) (2)
và \(m+1\ne2m+1\Rightarrow m\ne0\) (3)
Từ (1) và (2) và (3) ta tìm được m = 1.
Để hai đồ thị này song song thì
\(\left\{{}\begin{matrix}2m+4=m-1\\n< >2n-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-5\\n< >2\end{matrix}\right.\)
Để m là hàm số bậc nhất thì:
\(1-2m\ne0\)
\(\Leftrightarrow-2m+1\ne0\)
\(\Leftrightarrow-2m\ne-1\)
\(\Leftrightarrow m\ne0,5\)