Cho A =x-2/x+2 + x/2-x + 8/x^2 -4
a)Rút gọn A với x khác 2;-2
b)Tìm x để A<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
A= (2/x-√x - 1/√x-1) : x-4/x√x+√x - 2x với x>0, x khác 1, x khác 4 a) rút gọn A b) tìm x để A > -1/2
a: Ta có: \(A=\left(\dfrac{2}{x-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-4}{x\sqrt{x}+\sqrt{x}-2x}\)
\(=\dfrac{2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{x-4}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-\sqrt{x}+1}{\sqrt{x}+2}\)
a: \(A=\left(\dfrac{4}{x}-1\right):\left(1-\dfrac{x-3}{x^2+x+1}\right)\)
\(=\dfrac{4-x}{x}:\dfrac{x^2+x+1-x+3}{x^2+x+1}\)
\(=\dfrac{4-x}{x}\cdot\dfrac{x^2+x+1}{x^2+4}=\dfrac{\left(4-x\right)\left(x^2+x+1\right)}{x\left(x^2+4\right)}\)
b: x^4-7x^2-4x+20=0
=>(x-2)^2(x^2+4x+5)=0
=>x=2
Khi x=2 thì \(A=\dfrac{\left(4-2\right)\left(4+2+1\right)}{2\left(4+4\right)}=\dfrac{7}{8}\)
\(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\left(x>0;x\ne1;x\ne\dfrac{1}{4}\right)\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)
\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)
\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)
\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)
Với \(x\ge-1\) thì \(\left|x+1\right|=x+1\)\(\Rightarrow A=\frac{x+1+2x}{3x^2-2x+1}=\frac{3x+1}{3x^2-2x+1}\)
Thay \(x=\frac{3}{4}>-1\) vào ta được:\(A=\frac{3.\frac{3}{4}+1}{3.\left(\frac{3}{4}\right)^2-2.\frac{3}{4}+1}=\frac{52}{19}\)
Với \(x< -1\) thì \(\left|x+1\right|=-\left(x+1\right)=-x-1\)\(\Rightarrow A=\frac{-x-1+2x}{3x^2-2x+1}=\frac{x-1}{3x^2-2x+1}\)
Thay \(x=-2< -1\) vào ta được \(A=\frac{-2-1}{3.\left(-2\right)^2-2.\left(-2\right)+1}=-\frac{3}{17}\)
a) \(A=\dfrac{x-2}{x+2}+\dfrac{x}{2-x}+\dfrac{8}{x^2-4}\left(dkxd:x\ne2;x\ne-2\right)\)
\(=\dfrac{x-2}{x+2}-\dfrac{x}{x-2}+\dfrac{8}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{8}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-4x+4-x^2-2x+8}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-6x+12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)\(=\dfrac{-6}{x+2}\)
Vậy với \(x\ne2;x\ne-2\) thì \(A=\dfrac{-6}{x+2}\).
b) Để \(A< 0\) thì: \(\dfrac{-6}{x+2}< 0\)
\(\Rightarrow x+2>0\) (vì \(-6< 0\))
\(\Leftrightarrow x>-2\)
Kết hợp với điều kiện xác định của x, ta được: \(x>-2;x\ne2\)
Vậy \(A< 0\) khi \(x>-2;x\ne2\).