K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2024

Xét + \(\left|x-1\right|+\left|x-1996\right|\)
\(=\left|x-1\right|+\left|1996-x\right|\ge\left|x-1+1996-x\right|=1995\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-1\right)\left(1996-x\right)\ge0\)
\(\Rightarrow1\le x\le1996\)
       + \(\left|x-2\right|+\left|x-1995\right|\)
\(=\left|x-2\right|+\left|1995-x\right|\ge\left|x-2+1995-x\right|=1993\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-2\right)\left(1995-x\right)\ge0\)
\(\Rightarrow2\le x\le1995\)
           \(...\)
        + \(\left|x-997\right|+\left|x-998\right|\)
\(=\left|x-997\right|+\left|998-x\right|\ge\left|x-997+998-x\right|=1\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-997\right)\left(998-x\right)\ge0\)
\(\Rightarrow997\le x\le998\)
Do đó nên
\(\left(\left|x-1\right|+\left|x-1996\right|\right)+\left(\left|x-2\right|+\left|x-1995\right|\right)+...+\left(\left|x-997\right|+\left|x-998\right|\right)\ge1995+1993+...+1\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-1996\right|\ge\left(1+1995\right)\left[\left(1995-1\right):2+1\right]:2=996004\)
Dấu \("="\) xảy ra \(\Leftrightarrow997\le x\le998\)
Vậy giá trị nhỏ nhất của \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-1996\right|\) là \(996004\) khi \(997\le x\le998\)

5 tháng 8 2015

Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)

Dấu "=" xảy ra khi x = y = 1/2.

GTNN của A là 6.

\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)

Dấu "=" xảy ra khi x = y = 1/2.

Vậy GTNN của B là 8063.

 

12 tháng 10 2018

Thực hiện phép chia ta được thương là: \(2x^2+2x+1\)

Đặt \(A=2x^2+2x+1=2\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Chúc bạn học tốt.

12 tháng 10 2018

Cảm ơn Pham Van Hung nhé😆🙋

9 tháng 12 2015

a)  Tổng ccacs hệ số = f(1) =(1+4+3)2015 =82015

b) Tổng các hệ số mũ  lẻ : [f(1) -f(-1)]:2 =[ 82015- 0]:2 =82015:2

c) Tổng các hệ số chẵn : [f(1)+f(-1)]:2 =[ 82015+ 0]:2 =82015:2

14 tháng 11 2021

a) \(k=-5\)

b) \(-5x=y\)

c)  x             -4                 -1                2                   3

     y             20                 5               -10               -15

26 tháng 6 2024

Tìm x xong rồi tìm y

3 thì làm kiểu gì cũng được

22 tháng 12 2016

Có vẻ đề thiếu.

22 tháng 12 2016

Thiếu x+y+z= 1.. Xl  có lẽ mk nhìn nhầm

21 tháng 10 2020

huheo giúp tớ đi tớ cho:3

21 tháng 10 2020

giúp với:<