Cho 2 số nguyên a và b, biết a<b và b>0. Chứng minh \(\frac{a}{b}< \frac{a+1}{b +1}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{ab}{b\left(b+1\right)}+\frac{-a\left(b+1\right)}{b\left(b+1\right)}=\frac{-a}{b\left(b+1\right)}\)
\(\Rightarrow ab-a\left(b+1\right)=-a\)(khử mẫu)
\(\Leftrightarrow ab-ab-a=-a\)(đúng)
Vậy \(\frac{a}{b+1}+\frac{-a}{b}=\frac{-a}{b^2+b}\)
_Kik nha!! ^ ^
\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)
\(\frac{a}{b}< \frac{a}{b+1}\)(2 phân số cùng tử số, mẫu số nào bé hơn thì phân số đó lớn hơn)
\(\frac{a}{b+1}< \frac{a+1}{b+1}\)(2 phân số cùng mẫu số, tử số nào lớn hơn thì phân số đó lớn hơn)
Từ đó suy ra \(\frac{a}{b}< \frac{a+1}{b+1}\)
ta xét tích: a.(b+1) = ab+a
b.(a+1) = ab+b
- Do a<b \(\Rightarrow\)ab+a<ab+b\(\Rightarrow\)a.(b+1)<b.(a+1)
Suy ra: \(\frac{a}{b}\)<\(\frac{a+1}{b+1}\)