Cho tam giác MNP và một điểm H nằm trên cạnh NP thỏa mãn ΔMNH = ΔMPH . Chứng minh rằng: a) H là trung điểm của cạnh NP. b) Tia MH là tia phân giác của góc NMP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét `\Delta PMI` và `\Delta PHI`:
`\text {PH = PM (gt)}`
$\widehat {MPI} = \widehat {HPI} (\text {tia phân giác} \widehat {MPN}$
`\text { PI chung}`
`=> \Delta PMI = \Delta PHI (c-g-c)`
`-> \text {IM = IH (2 cạnh tương ứng)}`
a, xét tma giác MNE và tam giác MPE có :
MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)
NE = EP do E là trđ của NP (gt)
=> tam giác MNE = tam giác MPE (c-g-c)
=> góc MEN = góc MEP (đn)
mà góc MEN + góc MEP = 180 (kb)
=> góc MEN = 90
=> MN _|_ NP và có M là trđ của PN (Gt)
=> ME là trung trực của NP (đn)
b, xét tam giác MKE và tam giác MHE có : ME chung
góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)
góc MKE = góc MHE = 90
=> tam giác MKE = tam giác MHE (ch-cgv)
=> MK = MH (đn)
=> tam giác MHK cân tại M (đn)
=> góc MKH = (180 - góc NMP) : 2 (tc)
tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)
=> góc MKH = góc MNP mà 2 góc này đồng vị
=> KH // NP (đl)
b) Xét tứ giác MNDP có:
+ I là trung điểm của cạnh NP (gt).
+ I là trung điểm của cạnh DM (IM = ID).
=> Tứ giác MNDP là hình bình hành (dhnb).
=> MN = DP (Tính chất hình bình hành).
Ta có: NM \(\perp\) NP (Tam giác MNP vuông tại N).
Mà NM // DP (Tứ giác MNDP là hình bình hành).
=> DP \(\perp\) NP (đpcm).
c) Xét tứ giác ENPM có:
+ H là trung điểm của cạnh MN (gt).
+ H là trung điểm của cạnh PE (gt).
=> Tứ giác ENPM là hình bình hành (dhnb).
=> EN // MP (Tính chất hình bình hành).
Mà ND // MP (Tứ giác MNDP là hình bình hành).
=> 3 điểm E; N; D thẳng hàng. (1)
Ta có: EN = MP (Tứ giác ENPM là hình bình hành).
Mà ND = MP (Tứ giác MNDP là hình bình hành).
=> EN = ND. (2)
Từ (1) và (2) => N là trung điểm của ED (đpcm).
a: Xét ΔMAP và ΔBAN có
AM=AB
\(\widehat{MAP}=\widehat{BAN}\)(hai góc đối đỉnh)
AP=AN
Do đó: ΔMAP=ΔBAN
b: Ta có: ΔMAP=ΔBAN
=>\(\widehat{AMP}=\widehat{ABN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MP//BN
c: Xét ΔAIB có
AH là đường cao
AH là đường trung tuyến
Do đó:ΔAIB cân tại A
=>AI=AB
mà AB=AM
nên AI=AM
Xét ΔMNK có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMNK cân tại M
a: góc MHP=90 độ
b: Xét ΔMHG và ΔMQG có
MH=MQ
HG=QG
MG chung
Do đo; ΔMHG=ΔMQG