Tìm a,b để đa thức 2x3+ax+b chia cho x+1 dư -6 và chia cho x-2 dư 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo định lý Bezout về phép chia đa thức thì số dư của \(f(x)=2x^3+ax+b\) cho \(x+1\) và \(x-2\) lần lượt là \(f(-1)\) và \(f(2)\)
Do đó:
\(\left\{\begin{matrix} f(-1)=-2-a+b=-6\\ f(2)=16+2a+b=21\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} -a+b=-4\\ 2a+b=5\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=3\\ b=-1\end{matrix}\right.\)
https://olm.vn/hoi-dap/detail/92036248714.html
Xem ở link này ( mình gửi cho)
Học tốt!!!!!!!
Ta có:
\(x^2+ax+b=\left(x+1\right)\cdot P\left(x\right)+6\)
\(x^2+ax+b=\left(x-2\right)\cdot Q\left(x\right)+3\)
Với \(x=-1\Rightarrow x^2+ax+b=6\Leftrightarrow1-a+b=6\Rightarrow-a+b=6\)
Với \(x=2\Rightarrow x^2+ax+b=6\Leftrightarrow4+2a+b=6\Leftrightarrow2a+b=2\)
Từ \(\left(1\right);\left(2\right)\Rightarrow-3a=4\Rightarrow a=-\frac{4}{3}\Rightarrow b=\frac{14}{3}\)
Ta có: \(\hept{\begin{cases}x^2+2ax+b=\left(x-1\right)A\left(1\right)\\x^2+2ax+b=\left(x+2\right)B+4\left(2\right)\end{cases}}\)
Thay x=1 vào (1) rồi thay x=-2 vào (2) ta được:
\(\hept{\begin{cases}1+2a+b=0\\4-4a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}2a+b=-1\\-4a+b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{-1}{6}\\b=-\frac{4}{6}\end{cases}}}\)
-Áp dụng định lí Bezout:
\(P\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+7.\left(-1\right)^2+a.\left(-1\right)+b=0\)
\(\Rightarrow1+6+7-a+b=0\)
\(\Rightarrow a-b=14\left(1\right)\)
\(P\left(-2\right)=\left(-2\right)^4-6.\left(-2\right)^3+7.\left(-2\right)^2+a.\left(-2\right)+b=0\)
\(\Rightarrow16+48+28-2a+b=12\)
\(\Rightarrow2a-b=80\left(2\right)\)
-Từ (1) và (2) suy ra: \(a=66;b=52\)
giúp mình với ạ
mình cần gấp