K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2

a) Nhận thấy \(\widehat{OBK}=\widehat{OAK}=90^o\) \(\Rightarrow\) Tứ giác OAKB nội tiếp đường tròn (OK).

Mặt khác \(\widehat{OHK}=90^o\) nên \(H\in\left(OK\right)\)

\(\Rightarrow\) 5 điểm A, B, O, K, H cùng thuộc đường tròn (OK).

b) Từ câu a) \(\Rightarrow\) Tứ giác OAHB nội tiếp 

\(\Rightarrow\widehat{IHB}=\widehat{IAO}\)

Từ đó dễ dàng chứng minh \(\Delta IHB~\Delta IAO\left(g.g\right)\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{IB}{IO}\) \(\Rightarrow IA.IB=IH.IO\) (đpcm)

c) Gọi T là giao điểm của OK và AB.

Tính chất của 2 tiếp tuyến cắt nhau \(\Rightarrow OK\perp AB\) tại T

Tam giác OAK vuông tại A có đường cao AT nên \(OT.OK=OA^2\) (hệ thức lượng trong tam giác vuông)

Xét tam giác OTI và OHK, ta có:

\(\widehat{HOK}\) chung , \(\widehat{OTI}=\widehat{OHK}=90^o\)

 \(\Rightarrow\Delta OTI~\Delta OHK\left(g.g\right)\)

 \(\Rightarrow\dfrac{OT}{OH}=\dfrac{OI}{OK}\)

 \(\Rightarrow OT.OK=OH.OI\)

Mà \(OT.OK=OA^2\) (cmt) \(\Rightarrow OH.OI=OA^2\)

\(\Rightarrow OI=\dfrac{OA^2}{OH}\) là một hằng số 

\(\Rightarrow\) I thuộc đường tròn \(\left(O;\dfrac{OA^2}{OH}\right)\) cố định

Hơn nữa I nằm trên đường thẳng OH cố định nên I cố định

\(\Rightarrow\) AB đi qua I cố định.

3 tháng 3

khó thế con Phương kia

Giải chi tiết:

1)               Xét tứ giác OMHQ có ˆOQM=900OQM^=900(MQ là tiếp tuyến của (O))

                                     ˆOHM=900OHM^=900 (OH ⊥ d)

Vậy tứ giác OMHQ nội tiếp (Tứ giác có hai góc nội tiếp bằng nhau)

a: Ta có: \(\widehat{OHM}=\widehat{OAM}=\widehat{OBM}=90^0\)

=>O,H,M,A,B cùng thuộc đường tròn đường kính OM

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

từ (1) và (2) suy ra OM là đường trung trực của AB

=>OM\(\perp\)AB tại I

Xét ΔOIK vuông tại I và ΔOHM vuông tại H có

\(\widehat{IOK}\) chung

Do đó; ΔOIK~ΔOHM

=>\(\dfrac{OI}{OH}=\dfrac{OK}{OM}\)

=>\(OI\cdot OM=OK\cdot OH\)

a: góc MHO=góc MBO=góc MAO=90 độ

=>M,A,O,B,H nội tiếp

b: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại I

Xét ΔOIK vuông tại I và ΔOHM vuông tại H có

góc IOK chung

=>ΔOIK đồng dạng với ΔOHM

=>OI/OH=OK/OM

=>OI*OM=OH*OK