Cho đường tròn (O,R) và một đường thẳng (d) không cắt đường tròn O. Dựng đường thẳng OH vuông góc với d tại H. Trên đường thẳng (d) lấy điểm K khác điểm H. Vẽ hai tiếp tuyến KA và KB với đường tròn sao cho A, H nằm về hai phía của đường thẳng OK. a) Chứng minh năm diểm A, B, O, K, H cùng nằm trên một đường tròn. b) Đường thẳng AB cắt đường thẳng OH tại I. Chứng minh rằng IA.IB =IH.IO c) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi điểm K chạy trên đường thẳng (d) cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải chi tiết:
1) Xét tứ giác OMHQ có ˆOQM=900OQM^=900(MQ là tiếp tuyến của (O))
ˆOHM=900OHM^=900 (OH ⊥ d)
Vậy tứ giác OMHQ nội tiếp (Tứ giác có hai góc nội tiếp bằng nhau)
a: Ta có: \(\widehat{OHM}=\widehat{OAM}=\widehat{OBM}=90^0\)
=>O,H,M,A,B cùng thuộc đường tròn đường kính OM
b: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại I
Xét ΔOIK vuông tại I và ΔOHM vuông tại H có
\(\widehat{IOK}\) chung
Do đó; ΔOIK~ΔOHM
=>\(\dfrac{OI}{OH}=\dfrac{OK}{OM}\)
=>\(OI\cdot OM=OK\cdot OH\)
a: góc MHO=góc MBO=góc MAO=90 độ
=>M,A,O,B,H nội tiếp
b: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại I
Xét ΔOIK vuông tại I và ΔOHM vuông tại H có
góc IOK chung
=>ΔOIK đồng dạng với ΔOHM
=>OI/OH=OK/OM
=>OI*OM=OH*OK
a) Nhận thấy \(\widehat{OBK}=\widehat{OAK}=90^o\) \(\Rightarrow\) Tứ giác OAKB nội tiếp đường tròn (OK).
Mặt khác \(\widehat{OHK}=90^o\) nên \(H\in\left(OK\right)\)
\(\Rightarrow\) 5 điểm A, B, O, K, H cùng thuộc đường tròn (OK).
b) Từ câu a) \(\Rightarrow\) Tứ giác OAHB nội tiếp
\(\Rightarrow\widehat{IHB}=\widehat{IAO}\)
Từ đó dễ dàng chứng minh \(\Delta IHB~\Delta IAO\left(g.g\right)\)
\(\Rightarrow\dfrac{IH}{IA}=\dfrac{IB}{IO}\) \(\Rightarrow IA.IB=IH.IO\) (đpcm)
c) Gọi T là giao điểm của OK và AB.
Tính chất của 2 tiếp tuyến cắt nhau \(\Rightarrow OK\perp AB\) tại T
Tam giác OAK vuông tại A có đường cao AT nên \(OT.OK=OA^2\) (hệ thức lượng trong tam giác vuông)
Xét tam giác OTI và OHK, ta có:
\(\widehat{HOK}\) chung , \(\widehat{OTI}=\widehat{OHK}=90^o\)
\(\Rightarrow\Delta OTI~\Delta OHK\left(g.g\right)\)
\(\Rightarrow\dfrac{OT}{OH}=\dfrac{OI}{OK}\)
\(\Rightarrow OT.OK=OH.OI\)
Mà \(OT.OK=OA^2\) (cmt) \(\Rightarrow OH.OI=OA^2\)
\(\Rightarrow OI=\dfrac{OA^2}{OH}\) là một hằng số
\(\Rightarrow\) I thuộc đường tròn \(\left(O;\dfrac{OA^2}{OH}\right)\) cố định
Hơn nữa I nằm trên đường thẳng OH cố định nên I cố định
\(\Rightarrow\) AB đi qua I cố định.
khó thế con Phương kia