tìm giá trị nhỏ nhất 2*lx-2021l+lx-2023l
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có \(\hept{\begin{cases}\left|x\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|x\right|+\left|y-2\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy x = 0 ; y = 2
Thay x = 0 ; y = 2 vào B
=> B = 2.0 - 5.2 + 7.0.2 = -10
Vậy B = -10
Bài 2:
\(a)\)
\(A=\left|x-2021\right|+5\)
Ta có:
\(\left|x-2021\right|\ge0\Rightarrow\left|x-2021\right|+5\ge5\)
Dấu '' = '' xảy ra khi:
\(x-2021=0\)
\(\Leftrightarrow x=2021\)
Vậy \(MinA=5\Leftrightarrow x=2021\)
\(b)\)
\(B=\left|x-2\right|+\left|x-5\right|\)
\(B=\left|x-2\right|+\left|x-5\right|\ge\left|x-2+5-x\right|=\left|3\right|=3\)
Dấu '' = '' xảy ra khi:
\(\left(x-2\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow2\le x\le5\)
Vậy \(MinB=3\Leftrightarrow2\le x\le5\)
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)
mà \(\left|x-2\right|\ge0\)
\(\Rightarrow P\ge8\)
dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)
<=> x=2
vậy Pmin =8 <=> x=2
A= |x-5| +|x+17| = |5-x|+|x+17| >/ | 5-x +x+17| =22
=> Min A = 22 khi -17 </ x < / 5
B = ( |x+8| + |x+50| ) + |x+13| = ( |-x-8|+|x+50| ) + |x+13| >/ | -x-8 +x+50 | + 0 = 42
Min B =42 khi x = -13
A = | x - 2015 | + | x - 2016 |
= | x - 2015 | + | -( x - 2016 ) |
= | x - 2015 | + | 2016 - x |
≥ | x - 2015 + 2016 - x | = 1
Dấu "=" xảy ra <=> ( x - 2015 )( 2016 - x ) ≥ 0
=> 2015 ≤ x ≤ 2016
=> MinA = 1, đạt được khi 2015 ≤ x ≤ 2016
Để biểu thức trên đạt giá trị nhỏ nhất thì \(\left|x-2021\right|or\left|x-2023\right|\) đạt giá trị nhỏ nhất
TH1: \(GTNN:\left|x-2021\right|=0\) tại \(x=2021\)
Khi đó biểu thức trên có giá trị: \(2\cdot\left|2021-2021\right|+\left|2021-2023\right|=2\)
TH2: \(GTNN:\left|x-2023\right|=0\) tại \(x=2023\)
Khi đó biểu thức trên có giá trị: \(2\cdot\left|2023-2021\right|+\left|2023-2023\right|=4\)
Trường hợp 1 cho ra giá trị nhỏ nhất của biểu thức, vậy giá trị nhỏ nhất của \(2\cdot\left|x-2021\right|+\left|x-2023\right|=2\) tại \(x=2021\)