K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

\(\frac{x}{3}=\frac{z}{4};\frac{y}{2}=\frac{z}{3}\)

suy ra \(\frac{x.}{3.3}=\frac{z}{4.3};\frac{y}{2.4}=\frac{z}{3.4}\)

suy ra \(\frac{x}{9}=\frac{z}{12};\frac{y}{8}=\frac{z}{12}\)

suy ra \(\frac{x}{9}=\frac{z}{12}=\frac{y}{8}\)

áp dụng dãy tỉ số bằng nhau ta có

\(\frac{x-z-y}{9-12-8}=\frac{33}{-11}=-3\)

suy ra 

30 tháng 8 2017

x/3=z/4;y/2=z/3 và x-y-z=33

x/3=z/12;y/8=z/12 và x-y-z=33

x/3=y/8=z/12 và x--y-z=33

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x/3=y/8=z/12=x-y-z/3-8-12=33/-17=-33/17

x/3=-33/17=>x=-33/17.3=>x=-99/17

y/8=-33/17=>y=-33/17.8=>y=-264/17

z/12=-33/17=>z=-33/17.12=>z=-396/17

Vậy x=-99/17

      y=-264/17

      z=-396/17

tk mk nha bn

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Bài này có đúng là của lớp 7 không bạn?

12 tháng 2 2020

Bdt phu \(\frac{a^{n+2}+b^{n+2}}{a^{n+1}+b^{n+1}}\ge\frac{a^{n+1}+b^{n+1}}{a^n+b^n}\)

cai nay ban tu chung minh nha , nhan cheo rut gon la ra

dau = khi a=b

Ap dung ta co \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x^3+y^3}{x^2+y^2}\ge\frac{x^2+y^2}{x+y}\ge\frac{x+y}{2}\)

tuong tu va suy ra \(A\ge\frac{x+y+y+z+z+x}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z=2015\)

Vay Amin = 2015 <=> x=y=z=2015/3

chuc ban hoc tot

20 tháng 12 2017

Trước tiên chứng minh:

\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)

\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+b^4+a^3b+ab^3=\left(a+b\right)\left(a^3+b^3\right)\)

Áp dụng bài toán được

\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)

\(\ge\frac{1}{2}\left(x+y+y+z+z+x\right)=x+z+y=2018\)

23 tháng 11 2019

Ta có:

\(x^4+y^4\ge x^3y+xy^3\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

Σ\(\frac{x^4+y^4}{x^3+y^3}\)\(\ge x+y+z=2008\)

NV
20 tháng 4 2019

Chỉ tìm được min với điều kiện \(x;y;z\) dương, bất kì thì chịu

Áp dụng BĐT \(\frac{a^n+b^n}{a^{n-1}+b^{n-1}}\ge\frac{a^{n-1}+b^{n-1}}{a^{n-2}+b^{n-2}}\) ta được:

\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{z^4+y^4}{z^3+y^3}+\frac{x^4+z^4}{x^3+z^3}\ge\frac{x^3+y^3}{x^2+y^2}+\frac{z^3+y^3}{z^2+y^2}+\frac{x^3+z^3}{x^2+y^2}\)

\(P\ge\frac{x^2+y^2}{x+y}+\frac{z^2+y^2}{z+y}+\frac{x^2+z^2}{x+z}\ge\frac{x+y}{2}+\frac{z+y}{2}+\frac{x+z}{2}=x+y+z=2017\)

\(\Rightarrow P_{min}=2017\) khi \(x=y=z=\frac{2017}{3}\)

14 tháng 5 2018

Ta dễ dàng chứng minh BĐT

\(x^4+y^4\ge x^3y+xy^3\)

\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x+y\right)\left(x^3+y^3\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

Chứng minh tương tự, cộng theo vế, ta có:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{2\left(x+y+z\right)}{2}=2\)

Dấu "=" xảy ra khi x=y=z=1/3